
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

NFS Administration Guide

A Sun Microsystems, Inc. Business

Please
Recycle

 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from UNIX Systems Laboratories, Inc., a wholly
owned subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a
registered trademark of Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc.

All SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter, SPARCserver,
SPARCstation, SPARCstorage, SPARCworks, microSPARC, microSPARC-II, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUI’s and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN, THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAMS(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

iii

Contents

1. Solaris NFS Environment . 1

An Introduction to Networking . 1

Protocol Layers. 1

OSI Reference Model . 2

Network Layer . 3

Transport Layer . 4

TCP Protocol . 4

UDP Protocol . 4

Application Layer . 4

About the NFS Environment . 5

NFS Version 2 . 5

NFS Version 3 . 6

NFS ACL Support . 6

NFS over TCP. 7

Network Lock Manager . 7

iv NFS Administration Guide—November 1995

NFS Servers and Clients . 7

NFS File Systems . 8

Autofs . 8

Autofs Features . 9

2. NFS Administration . 11

NFS Files . 12

NFS Daemons . 13

NFS Commands . 14

mount . 15

mount Options for NFS File Systems 16

Additional mount Options . 18

Using the mount Command . 19

umount . 20

Using the umount Command. 20

mountall . 21

Using the mountall Command 21

umountall . 21

Using the umountall Command 22

share . 22

share Options . 23

share Options for NFS File Systems 23

Using the share Command . 25

unshare . 26

Using the unshare Command. 26

Contents v

shareall . 26

Using the shareall Command 27

unshareall . 27

Using the unshareall Command 27

showmount . 27

Using the showmount Command 28

setmnt . 28

Other Useful Commands . 28

nfsstat . 29

Using the nfsstat Command. 30

pstack . 31

Using the pstack Command. 31

rpcinfo . 32

Using the rpcinfo Command. 33

snoop . 34

truss . 35

Using the truss Command . 35

Automatic File System Sharing . 35

Mounting at Boot Time . 36

Example of a vfstab entry . 37

Mounting on the Fly . 37

Mounting with the Automounter . 38

3. Setting Up and Maintaining NFS Security. 39

Secure NFS . 39

vi NFS Administration Guide—November 1995

Secure RPC . 40

DES Authentication . 41

KERB Authentication . 42

AUTH_DES Client-Server Session. 42

Administering Secure NFS . 47

▼ How to Set Up Secure NFS. 47

4. NFS Troubleshooting . 51

Strategies for NFS Troubleshooting . 51

NFS Troubleshooting Procedures. 53

▼ How to Check Connectivity on a NFS Client. 53

▼ How to Remotely Check the NFS Server 54

▼ How to Verify the NFS Service on the Server 55

▼ How to Restart NFS Services . 57

▼ How to Warm Start rpcbind . 58

Common NFS Error Messages . 58

5. Using Autofs . 61

How Autofs Works . 61

Autofs Programs . 64

automount . 64

automountd . 64

Setting Up Autofs Maps . 65

Master Maps . 65

Direct Maps . 66

Indirect Maps . 67

Contents vii

How Autofs Navigates Through the Network (Maps) 69

How Autofs Starts the Navigation Process (Master Map) . 70

Mount Point /– . 70

Mount Point /home . 71

Mount Point /net . 71

The Mount Process. 71

Multiple Mounts . 73

How Autofs Selects the Nearest Read-Only Files for Clients
(Multiple Locations) . 76

Variables in a Map Entry. 78

Maps That Refer to Other Maps. 79

Modifying How Autofs Navigates the Network (Modifying
Maps) . 81

Administrative Tasks Involving Maps 81

Modifying the Maps . 82

Avoiding Mount-Point Conflicts . 84

Default Autofs Behavior . 84

Autofs Reference . 86

Metacharacters . 86

Special Characters . 87

Accessing Non-NFS File Systems . 88

Accessing NFS File Systems Using CacheFS 89

Common Tasks and Procedures . 89

How to Set Up Different Architectures to Access a Shared Name
Space . 90

viii NFS Administration Guide—November 1995

Troubleshooting Autofs. 97

Error Messages Generated by automount -v 97

Miscellaneous Error Messages . 98

Other Errors with Autofs . 100

A. NFS Tunables. 101

▼ How to Set the Value of a Kernel Parameter 105

Index . 107

ix

Figures

Figure 5-1 /etc/init.d/autofs Script Starts automount 63

Figure 5-2 Master Map. 70

Figure 5-3 Server Proximity . 77

Figure 5-4 How Autofs Uses the Name Service. 85

x NFS Administration Guide—November 1995

xi

Tables

Table 1-1 The Open Systems Interconnect Reference Model 3

Table 2-1 NFS ASCII files . 12

Table 2-2 FStype Options for mount . 15

Table 2-3 Generic Options for mount . 16

Table 5-1 auto_master File Contents. 70

Table 5-2 Predefined Map Variables . 78

Table 5-3 Types of Maps and Their Uses . 81

Table 5-4 Map Maintenance . 82

Table 5-5 When to Run the automount Command 82

xii NFS Administration Guide—November 1995

xiii

Preface

NFS Administration Guide presents the administrative tasks required for the
successful operation of the SunSoft™ NFS® distributed file system. This
resource-sharing product allows you to share files and directories among a
number of computers on a network.

Also included in this manual is how to set up and use autofs (formerly called
the automounter) to automatically mount and unmount NFS file systems.

This book is organized into explanatory background material and task-oriented
instructions.

Who Should Use This Book
This book is intended for the system administrator whose responsibilities
include setting up and maintaining NFS systems. Though much of the book is
directed toward the experienced system administrator, it also contains
information useful to novice administrators and other readers who may be
new to the Solaris™ platform.

How This Book Is Organized
Chapter 1, “Solaris NFS Environment,” provides an overview of the Solaris
NFS environment and autofs.

Chapter 2, “NFS Administration,” provides information on how to set-up NFS
servers. It assumes you are using NIS or NIS+ as your name service.

xiv NFS Administration Guide—November 1995

Chapter 3, “Setting Up and Maintaining NFS Security,” presents background
information on the security features of NFS software, as well as fundamental
procedures for setting up and maintaining NFS security.

Chapter 4, “NFS Troubleshooting,” describes problems that may occur on
machines using NFS services. It contains procedures for tracking NFS
problems. Background and reference sections are also included.

Chapter 5, “Using Autofs,” provides procedures for setting up and using
autofs. It also includes background, reference, and troubleshooting sections.

Appendix A, “NFS Tunables,” lists several parameters that can be changed to
improve the NFS service. It includes instructions for making these changes.

Related Books
• NIS+ and DNS Setup and Configuration Guide
• System Administration Guide, Volume I
• System Administration Guide, Volume II
• TCP/IP and Data Communications Administration Guide

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

Preface xv

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt
for the C shell, Bourne shell, and Korn shell.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Table P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

xvi NFS Administration Guide—November 1995

1

Solaris NFS Environment 1

This chapter provides an overview of the NFS environment. It includes a short
introduction to networking, a description of the NFS service and a discussion
of the concepts necessary to understand the NFS system.

An Introduction to Networking
The NFS software depends on many levels of networking software. Each
network program can be associated with one or more network protocols. Each
protocol simply defines how messages or data are to be exchanged. This
section presents a short description of the networking fundamentals that are
necessary to fully utilize the NFS product.

Protocol Layers

Some network protocols are structured as a series of layers, sometimes referred
to collectively as a protocol stack. Each layer is designed for a specific purpose
and exists on both the sending and receiving hosts. Each is designed so that a
specific layer on one machine sends or receives exactly the same object sent or

An Introduction to Networking page 1

About the NFS Environment page 5

NFS Servers and Clients page 7

NFS File Systems page 8

Autofs page 8

2 NFS Administration Guide—November 1995

1

received by its peer process on another machine. These activities take place
independently from what is going on in layers above or below the layer under
consideration. In other words, each layer on a host acts independently of other
layers on the same machine and in concert with the same layer on other hosts.

OSI Reference Model

The Open Systems Interconnection (OSI) Reference Model is the basis of some
commercially available network service architectures. Most network protocols
developed independently conform loosely to the model. The Transmission
Control Protocol/Internet Protocol (TCP/IP) is an example. For more
information on TCP/IP, see TCP/IP and Data Communications Administration
Guide.

The OSI Reference Model is a convenient framework for networking concepts.
Basically, data are added to a network by a sender. The data is transmitted
along a communication connection and is delivered to a receiver. To do this, a
variety of networking hardware and software must work together.

Industry standards have been or are being defined for each layer of the
reference model. Users of a service interface standard should be able to ignore
the protocol and any other implementation details of the layer.

The OSI model describes network activities as having a structure of seven
layers, each of which has one or more protocols associated with it. The layers
represent data-transfer operations common to all types of data transfers among
cooperating networks.

Solaris NFS Environment 3

1

The protocol layers of the OSI Reference Model are traditionally listed from the
top (layer 7) to the bottom (layer 1), as shown in Table 1-1.

Each protocol layer performs services for the layer above it. The OSI definition
of the protocol layers provides designers some freedom of implementation. For
example, some applications skip the presentation and session layers to
interface directly with the transport layer.

The operations defined by the OSI model are purely conceptual and not unique
to any particular network protocol suite. For example, the OSI network
protocol suite implements all seven layers of the OSI Reference Model. TCP/IP
uses some of OSI model layers and combines others. Other network protocols,
such as SNA, add an eighth layer.

Network Layer

This layer, also known as the Ethernet layer, is responsible for machine-to-
machine communications. It determines the path a transmission must take,
based on the receiving machine’s IP address. Besides message routing, it also
translates from logical to physical addresses and provides error detection.

Table 1-1 The Open Systems Interconnect Reference Model

Layer No. Layer Name Description

 7 Application Consists of standard communication services and
applications that everyone can use.

 6 Presentation Ensures that information is delivered to the receiving
machine in a form that it can understand.

 5 Session Manages the connections and terminations between
cooperating computers.

4 Transport Manages the transfer of data and assures that received
and transmitted data are identical.

3 Network Manages data addressing and delivery between
networks.

2 Data Link Handles the transfer of data across the physical network.

1 Physical Specifies the physical characteristics of the hardware
connections between hosts and networks.

4 NFS Administration Guide—November 1995

1

Transport Layer

The transport layer controls the flow of data on the network and assures that
received and transmitted data are identical. TCP/IP or UDP may be used to
enable communications between application programs running on separate
machines.

TCP Protocol

TCP enables applications to communicate with each other as though connected
by a physical circuit. TCP sends data in a form that appears to be transmitted
in a character-by-character fashion, rather than in discrete packets. This
transmission consists of a starting point, which opens the connection, the entire
transmission in byte order, and an ending point, which closes the connection.

TCP makes an attempt to confirm that a packet has reached its destination by
establishing an end-to-end connection between sending and receiving hosts.
TCP is therefore considered a “reliable, connection-oriented” protocol.

UDP Protocol

UDP provides datagram delivery service. It does not provide any means of
verifying that connection was ever achieved between receiving and sending
hosts. Because UDP eliminates the processes of establishing and verifying
connections, applications that send small amounts of data often use it rather
than TCP. UDP is a “connectionless” protocol.

Application Layer

The application layer defines standard Internet services and network
applications that anyone can use. These services work with the transport layer
to send and receive data. There are many applications layer protocols, some of
which you probably already use. Some of the protocols include:

• Standard TCP/IP services such as the ftp , tftp , and telnet commands
• UNIX “r” commands, such as rlogin and rsh
• Name services, such as NIS+ and Domain Name System (DNS)
• File services, such as the NFS system

Solaris NFS Environment 5

1

About the NFS Environment
The NFS environment is a service that enables computers of different
architectures running different operating systems to share file systems across a
network. The NFS software has been implemented on many platforms ranging
from the MS-DOS® to the VMS® operating systems.

The NFS environment can be implemented on different operating systems
because it defines an abstract model of a file system, rather than an
architectural specification. Each operating system applies the NFS model to its
file system semantics. This means that file system operations like reading and
writing function as though they are accessing a local file.

The benefits of NFS software are that it:

• Allows multiple computers to use the same files, so the same data can be
accessed by everyone on the network

• Reduces storage costs by having computers share applications instead of
needing local disk space for each user application

• Provides data consistency and reliability because all users can read the same
set of files

• Makes mounting of file systems transparent to users
• Makes accessing remote files transparent to users
• Supports heterogeneous environments
• Reduces system administration overhead

The NFS system makes the physical location of the file system irrelevant to the
user. You can use the NFS system to enable users to see all the relevant files,
regardless of location. Instead of placing copies of commonly used files on
every system, the NFS software allows you to place one copy on one
computer’s disk and have all other systems access it across the network. Under
NFS operation, remote file systems are indistinguishable from local ones.

NFS Version 2

SunOS releases prior to Solaris 2.5 support Version 2 of the NFS protocol. The
current release supports both the Version 2 and Version 3 protocols.

6 NFS Administration Guide—November 1995

1

NFS Version 3

An implementation of NFS Version 3 software is a new feature of the Solaris
2.5 release. Several changes have been made to improve interoperability and to
improve performance. To take full advantage of these improvements, the
software should be running on the NFS servers and clients.

This version allows for safe asynchronous writes on the server, which
improves performance by allowing the server to cache client write requests in
memory. The client does not need to wait for the server to commit the changes
to disk, so the response time is faster. Also, the server can batch the requests,
which improves the response time on the server.

All operations in NFS Version 3 bring over the file attributes, which are stored
in the local cache. Since the cache is updated more often, the need to do a
separate operation to update this data happens less often. Specifically, the
number of RPC calls to the server is reduced, improving performance.

The process for verifying file access permissions has been improved. In
particular, in Version 2 a message reporting a “write error” or a “read error”
would be generated if users tried to copy a remote file that they did not have
permissions to. In Version 3, the permissions are checked before the file is
opened, so the error is reported as an “open error.”

NFS Version 3 software removes the 8-Kbyte transfer size limit. Clients and
servers will negotiate whatever transfer size they support, rather than be
restricted by the 8-Kbyte limit that was imposed in Version 2. The Solaris 2.5
implementation defaults to a 32-Kbyte transfer size.

NFS ACL Support

Access Control List (ACL) support has been added in this release. The ACL
software provides a more precise way to set file access permissions than is
available through normal UNIX file permissions. Although performance may
not be improved with this addition, access to files can be restricted further,
which could tighten security.

Solaris NFS Environment 7

1

NFS over TCP

The default transport protocol for the NFS protocol has been changed to TCP,
which will help performance on slow networks. TCP provides congestion
control and error recovery.

Network Lock Manager

The Solaris 2.5 release also includes an improved version of the network lock
manager, which provides UNIX record locking and PC file sharing for NFS
files. The locking mechanism is now more reliable for NFS files, and so,
commands like ksh and mail , which use locking, are less likely to hang.

NFS Servers and Clients
The terms client and server are used to describe the roles that a computer plays
when sharing file systems. If a file system resides on a computer’s disk and
that computer makes the file system available to other computers on the
network, then that computer acts as a server. The computers that are accessing
that file system are said to be clients. NFS software enables any given
computer to access any other computer’s file systems and, at the same time, to
provide access to its own file systems. A computer may play the role of client,
server, or both at any given time on a network.

A server can provide files to a diskless client, a computer that has no local disk.
A diskless client relies completely on the server for all its file storage. A
diskless client can act only as a client—never as a server.

Clients access files on the server by mounting the server’s shared file systems.
When a client mounts a remote file system, it does not make a copy of the file
system; rather, the mounting process uses a series of remote procedure calls
that enable the client to access the file system transparently on the server’s
disk. The mount looks like a local mount and users type commands as if the
file systems were local.

Once a file system has been shared on a server through NFS operation, it can
be accessed from a client. NFS file systems may be mounted automatically with
autofs.

8 NFS Administration Guide—November 1995

1

NFS File Systems
The objects that can be shared through the NFS software include any whole or
partial directory tree or a file hierarchy—including a single file. A computer
cannot share a file hierarchy that overlaps one that is already shared.
Peripheral devices such as modems and printers cannot be shared.

In most UNIX system environments, a file hierarchy that can be shared
corresponds to a file system or to a portion of a file system; however, NFS
software works across operating systems, and the concept of a file system may
be meaningless in other, non-UNIX environments. Therefore, the term file
system is used throughout this guide to refer to a file or file hierarchy that can
be shared and mounted over the NFS environment.

Autofs
File systems shared through NFS software can be mounted using automatic
mounting. Autofs, a client-side service, is a file system structure that provides
advanced automatic mounting. The file system structure is created by
automount . This program notifies the automount daemon, automountd ,
when mounting or unmounting needs to be done. The daemon runs in the
background, mounting and unmounting remote directories on an as-needed
basis.

Whenever a user on a client computer running automountd tries to access a
remote file or directory, the daemon mounts the file system to which that file or
directory belongs. This remote file system remains mounted for as long as it is
needed. If the remote file system is not accessed for a certain period of time, it
is automatically unmounted.

No mounting is done at boot time, and the user no longer has to know the
superuser password to mount a directory; users need not use the mount and
umount commands. The autofs service mounts and unmounts file systems as
required without any intervention on the part of the user.

Mounting some file hierarchies with automountd does not exclude the
possibility of mounting others with mount . A diskless computer must mount
/ (root), /usr , and /usr/kvm through the mount command and the
/etc/vfstab file.

More specific information about the autofs service is given in Chapter 5,
“Using Autofs.”

Solaris NFS Environment 9

1

Autofs Features

Autofs works with file systems specified in the local name space. This
information can be maintained in NIS, NIS+, or local files.

The name space data can specify several remote locations for a particular file.
This way, if one of the servers is down, the autofs service can try to mount
from another computer. To specify which servers are preferred for each file
system in the maps, each server can be assigned a weighting factor.

10 NFS Administration Guide—November 1995

1

11

NFS Administration 2

This chapter provides an introduction to the NFS commands. This chapter also
provides information on how to perform such NFS administration tasks as
setting up NFS servers, adding new file systems to share, unsharing file
systems, displaying shared local file systems, and displaying mounted file
systems. It assumes you are using NIS or NIS+ as your name service.

Your responsibilities as an NFS administrator depend on your site’s
requirements and the role of your computer on the network. You may be
responsible for all the computers on your local network, in which case you
may be responsible for the major tasks involved in NFS administration:

• Determining which computers, if any, should be dedicated servers
• Which should act as both servers and clients
• Which should be clients only

NFS Files page 12

NFS Daemons page 13

NFS Commands page 14

Other Useful Commands page 28

Automatic File System Sharing page 35

Mounting at Boot Time page 36

Mounting on the Fly page 37

Mounting with the Automounter page 38

12 NFS Administration Guide—November 1995

2

Maintaining a server once it has been set up involves the following tasks:

• Sharing and unsharing file systems as necessary

• Modifying administrative files to update the lists of file systems your
computer shares or mounts automatically

• Checking the status of the network

• Diagnosing and fixing NFS-related problems as they arise – see to
Chapter 4, “NFS Troubleshooting”

• Setting up maps for autofs – see Chapter 5, “Using Autofs”

Remember, a computer can be both a server and a client—sharing local file
systems with remote computers and mounting remote file systems.

NFS Files
Several ASCII files are needed to support NFS activities on any computer.
Table 2-1 lists these files and their function.

The first entry in /etc/dfs/fstypes is often used as the default file system
type for remote file systems. This entry defines the NFS file system type as the
default.

Table 2-1 NFS ASCII files

File Name Function

/etc/vfstab Defines file systems to be mounted locally (see the
vfstab(4) man page)

/etc/mnttab Lists file systems that are currently mounted including
automounted directories (see the mnttab(4) man page);
do not edit this file

/etc/rmtab Lists file systems remotely mounted by NFS clients (see the
rmtab(4) man page); do not edit this file

/etc/default/fs Lists the default file system type for local file systems

/etc/dfs/dfstab Lists the local resources to be shared

/etc/dfs/fstype s Lists the default file system types for remote file systems

/etc/dfs/sharetab Lists the resources (local and remote) that are shared (see
the sharetab(4) man page); do not edit this file

NFS Administration 13

2

There is only one entry in /etc/default/fs : the default file system type for
local disks. The file system types that are supported on a client or server can be
determined by checking the files in /kernel/fs .

NFS Daemons
To support NFS activities, several daemons are started when a system goes into
run level 3 or multiuser mode. Two of these daemons (mountd and nfsd) are
run on systems that are NFS servers. The automatic startup of the server
daemons depends on the existence of entries labeled with the NFS file system
type in /etc/dfs/sharetab .

The other two daemons (lockd and statd) are run on NFS clients to support
NFS file locking. These daemons must also run on the NFS servers.

lockd

This daemon supports record locking operations on NFS files. It will send
locking requests from the client to the NFS server. On the NFS server, it will
start local locking. The daemon is normally started without any options. The
command syntax is:

lockd [-g graceperiod] [-t timeout]

where graceperiod selects the number of seconds that the clients have to
reclaim locks after the server reboots, and timeout selects the number of
seconds to wait before retransmitting a lock request to the remote server.
The default value for graceperiod is 45 seconds. Reducing this value means
that NFS clients can resume operation more quickly after a server reboot,
but it increases the chances that a client might not be able to recover all of its
locks. The default value for timeout is 15 seconds. Decreasing the timeout
value can improve response time for NFS clients on a noisy network, but it
can cause additional server load by increasing the frequency of lock
requests.

mountd

This is an RPC server that handles file system mount requests from remote
systems. It checks /etc/dfs/sharetab to determine which file systems
are available for remote mounting and which systems are allowed to do the
remote mounting. There are no options to select with this daemon.

14 NFS Administration Guide—November 1995

2

nfsd

This daemon handles other client file system requests. The command syntax
is:

nfsd [-a] [-p protocol] [-t device] [-c #_conn] [nservers]

where -a indicates to start a daemon over all available transports, protocol
selects a specific protocol to run the daemon over, device chooses a specific
transport for the daemon, -c #_conn selects the maximum number of
connections per connection-oriented transport, and nservers is the maximum
number of concurrent requests that a server can handle. The default value
for #_conn is unlimited. The default value for nservers is 1, but the startup
scripts select 16.

Unlike older versions of this daemon, nfsd does not spawn multiple copies
to handle concurrent requests. Checking the process table with ps will only
show one copy of the daemon running.

statd

This daemon works with lockd to provide crash and recovery functions for
the lock manager. It keeps track of the clients that hold locks on a NFS
server. If a server crashes, upon rebooting statd on the server will contact
statd on the client. The client statd can then attempt to reclaim any locks
on the server. The client statd will also inform the server statd when a
client has crashed, so that the client’s locks on the server can be cleared.
There are no options to select with this daemon.

NFS Commands
These commands must be run as root to be fully effective, but requests for
information can be made by all users:

• mount – See page 15.
• mountall – See page 21.
• setmnt – See page 28.
• share – See page 22.
• shareall – See page 26.
• showmount – See page 27.
• umount – See page 20.
• umountall – See page 21.
• unshare – See page 26.

NFS Administration 15

2

• unshareall – See page 27.

mount

With this command, you can attach a named file system, either local or remote,
to a specified mount point. For more information, see the mount(1M) man
page.

Used without arguments, mount displays a list of file systems that are
currently mounted on your computer. The syntax is:

mount [-F FSType] [generic_options] [-o specific_options] resource mount_point

where -F FSType specifies the file system type to be accessed, generic_options
selects options that are not specific to the type of file system that regulates how
the file system will be accessed, -o specific_options indicates access options that
are specific to each file system type, resource is the name of the file system to be
accessed, and mount_point is the place on the local file system to which the file
system will be attached.

Many types of file systems are included in the standard Solaris installation. For
a complete description of all of the file system types, see System Administration
Guide, Volume I. Some available options are listed in Table 2-2.

Table 2-2 FStype Options for mount

FSType Selection File System Type Description

cachefs Cache file system using local disks to store information from a
remote system for faster access and less net traffic

hsfs High Sierra file system used on CD-ROMs

nfs Default SunOS distributed file system

pcfs PC file system created on a DOS system

s5fs System V file system used by PC versions of UNIX

tmpfs Temporary file system using local memory for the file system

ufs UNIX file system is the SunOS default for local disks

16 NFS Administration Guide—November 1995

2

The mount command includes options that are file system specific and some
that are not. The options that are not file system specific are sometimes called
the generic options. These options are shown in Table 2-3.

The list of options that may be included with the -o flag are different for each
file system type. Each file system type has a specific mount man page which
lists these options. The man page for NFS file systems is mount_nfs(1M) , for
UFS file systems it is mount_ufs(1M) , and so forth.

mount Options for NFS File Systems

Listed below are some of the most commonly used options that can follow the
–o flag when mounting an NFS file system.

bg|fg

If the first mount attempt fails, retry in the background (bg) or foreground
(fg). The default is fg , which is the best selection for file systems that must
be available. It prevents further processing until the mount is complete. bg
is a good selection for file systems that are not critical, because the client
will do other processing while waiting for the mount request to complete.

intr|nointr

Allow (intr) or disallow (nointr) keyboard interruption to kill a process
that is hung while waiting for a hard-mounted file system. Default is intr .
The intr option makes it possible for clients to interrupt applications
which may be waiting for a remote mount.

noac

Suppress attribute caching, so attributes are always up-to-date. This allows
for the mail delivery and mail user agents to lock mail files properly.

Table 2-3 Generic Options for mount

Generic Option Description

-m Mounts without creating an entry in /etc/mnttab

-r Mounts read-only

-o Includes FSType-specific options in a comma separated list

-O Overlays mount on top of file system already mounted

NFS Administration 17

2

proto= netid

Select the transport protocol to be used. The value for netid must be listed in
/etc/netconfig . Possible values are udp or tcp . TCP will be selected by
default.

quota|noquota

Execution of quota is enabled or disabled (see the quota(1M) man page).
If the file system is on a remote server that has quota enabled, quota will
be run regardless of how it is mounted locally. Running quota is the
default.

rsize=#

Select the read buffer size in bytes. The default is 8 Kbytes for Version 2 and
32 Kbytes for Version 3.

wsize=#

Select the write buffer siz in bytes. The default is 8 Kbytes for Version 2, and
32 Kbytes for Version 3.

Warning – Third party Ethernet cards, can not always support the 8-Kbyte
buffer size so it may be necessary to select a proper rsize and wsize value.

rw|ro

The file system is to be mounted read-write or read-only. The default is
read-write, which is the appropriate option for remote home directories,
mail-spooling directories or other file systems that will be need to be
changed by the users. The read-only option is appropriate for directories
that should not be changed by the users, for example, shared copies of the
man pages should not be writable by the users.

soft|hard

An NFS file system mounted with the soft option will return an error if the
server does not respond. The hard option will cause the mount to continue
to retry until the server responds. The default is hard which should be used
for most file systems. Applications frequently do not check return values
from soft mounted file systems, which can make the application fail or can
lead to corrupted files. Even if the application does check, routing problems
and other conditions can still confuse the application or lead to file

18 NFS Administration Guide—November 1995

2

corruption if the soft option is used. In most cases the soft option should
not be used. If a file system is unavailable, an application using this file
system may hang if the hard option is selected until the file system becomes
available.

suid|nosuid

setuid execution on the file system is allowed or disallowed. Allowing
suid execution is the default. This is a potential security problem.

vers=#

Select the version of the NFS protocol to be used (either 2 or 3). Version 3
will automatically be selected if it is supported by the client and the server.
This option can be used to force a specific version.

Additional mount Options

The mount command includes some options that do not require a file system
type to be specified in the command line. These are described below.

-a [mount_points]

Attempts to mount the selected mount_points in parallel if possible. If
mount_points are not given then all entries in /etc/vfstab that should be
mounted at boot are tried. If the -F nfs option is included then all file
system that are listed as nfs type in /etc/vfstab are mounted. Selecting
-F ufs mounts only the local file systems.

-p

Prints a list of the mounted file systems in a format appropriate for the
/etc/vfstab file. This is useful for adding entries to the file without
mistakes. This option cannot be used with others.

-v

Displays a more verbose listing of the currently mounted file systems. The
information is much like that displayed when no options are used, but it
includes the type of file system. This option cannot be used with others.

NFS Administration 19

2

-V

Echoes the command line but will not execute it. This command can be
useful when verifying configurations and needed command lines.

Using the mount Command

Both of these commands will mount an NFS file system from the server bee
read-only:

This command will force the man pages from the server bee to be mounted on
the local system even if /usr/man has already been mounted on:

Use the mount command with no arguments to display file systems mounted
on a client.

mount -F nfs -r bee:/export/share/man /usr/man

mount -F nfs -o -ro bee:/export/share/man /usr/man

mount -F nfs -O bee:/export/share/man /usr/man

% mount
/ on /dev/dsk/c0t3d0s0 read/write/setuid on Tues Jan 24 13:20:47 1995
/usr on /dev/dsk/c0t3d0s6 read/write/setuid on Tues Jan 24 13:20:47 1995
/proc on /proc read/write/setuid on Tues Jan 24 13:20:47 1995
/dev/fd on fd read/write/setuid on Tues Jan 24 13:20:47 1995
/tmp on swap read/write on Tues Jan 24 13:20:51 1995
/opt on /dev/dsk/c0t3d0s5 setuid/read/write on Tues Jan 24 13:20:51 1995
/home/kathys on bee:/export/home/bee7/kathys

intr/noquota/nosuid/remote on Tues Jan 24 13:22:13 1995

20 NFS Administration Guide—November 1995

2

umount

This command allows you to remove a remote file system that is currently
mounted. The syntax of the command is:

umount [-o specific_options] resource | mount_point

where -o specific_options indicates options that are specific to each file system
type, resource is the name of the file system to be disconnected, and mount_point
is the place on the local file system to which the file system is attached.

Like mount, umount supports the -o and -V options to allow for extra
options and for testing. The extra options selected with the -o option should
not be necessary to uniquely identify the file system if entries are kept current
in /etc/mnttab . The -a option may also be used, but it behaves differently. If
mount_points are included with the -a option, then those file systems are
unmounted. If no mount points are included, then an attempt is made to
unmount all file systems listed in /etc/mnttab , except for the “required” file
systems, such as / , /usr , /var , /proc , /dev/fd, and /tmp .

Since the file system is already mounted and should have any entry in
/etc/mnttab there is no need to include a flag for the file system type.

The command will not succeed if the file system is in use. For instance, if a
user has used cd to get access to a file system, the file system will be busy until
they change their working directory. The umount command may hang
temporarily if the NFS server is unreachable.

Using the umount Command

This example unmounts a file system mounted on /usr/man :

umount /usr/man

NFS Administration 21

2

This example displays the results of running umount -a -V :

mountall

Use this command to mount all file systems specified in a file system table. The
syntax of the command is:

mountall [-F FSType] [-l | -r] [file_system_table]

where -F FSType specifies the file system type to be accessed, -l indicates that
only local file systems are to be used, -r indicates that only remote file systems
are to be used, and file_system_table selects an alternate to /etc/vfstab .

Using the mountall Command

These two examples are equivalent:

umountall

Use this command to unmount a group of file systems. The syntax of the
command is:

umountall [-k] [-s] [-F FSType] [-l | -r]

umountall [-k] [-s] [-h host]

where -k indicates that the fuser -k mount_point command should be used to
kill any processes associated with the mount_point, -s indicates that unmount
is not to be performed in parallel, -F FSType specifies the file system type to be

umount -a -V
umount /home/kathys
umount /opt
umount /home
umount /net

mountall -F nfs

mountall -F nfs -r

22 NFS Administration Guide—November 1995

2

unmounted, -l specifies that only local file systems are to be used, and -r
specifies that only remote file systems are to be used. The -h host option
indicates that all file systems from the named host should be unmounted. The
-h option can not be combined with -F , -l or -r .

Using the umountall Command

This command unmounts all file systems that are mounted from remote hosts:

This command unmounts all file systems currently mounted from the server
bee :

share

With this command, you can make a local file system on an NFS server
available for mounting. You can also use the share command to display a list
of the file systems on your system that are currently shared. The command has
this syntax:

share [-F FSType] [-o specific_options][-d description] pathname

where -F FSType indicates the type of file system that is to be shared, -o
specific_options is a comma-separated list of options that regulates how the file
system is shared, description is a comment that describes the file system to be
shared, and pathname is the full name of the file system to be shared, starting at
root (/). If the -F option is not used, then /etc/dfs/fstypes is checked to
determine the default file system type (normally this is set to NFS).

The NFS server must be running for the share command to work. The NFS
server software is started automatically during boot if there is an entry in
/etc/dfs/dfstab . The command will not report an error if the NFS server
software is not running, so you must check this yourself.

umountall -r

umountall -h bee

NFS Administration 23

2

The objects that can be shared include any directory tree, but each file system
hierarchy is limited by the disk slice or partition that the file system is located
on. For instance, sharing the root (/) file system would not also share /usr ,
unless they are on the same disk partition or slice. Normal installation places
root on slice 0 and /usr on slice 6. Also, sharing /usr would not share any
other local disk partitions that are mounted on subdirectories of /usr .

A file system can not be shared that is part of a larger file system that is
already shared. For example, if /usr and /usr/local are on one disk slice,
then /usr can be shared or /usr/local can be shared, but if both need to be
shared with different share options then /usr/local will need to be moved
to a separate disk slice.

Warning – It is possible to gain access to a file system which is shared read-
only through the file handle of a file system that is shared read-write if the two
file systems are on the same disk slice. It is more secure to place those file
systems that need to be read-write on a separate partition or disk slice than the
file systems that you need to share read-only.

share Options

The options that can be included with the -o flag are:

rw|ro

The pathname file system is shared read-write or read-only to all clients

rw=client[:client]...

The file system is shared read-write to the listed clients only. All other
requests are denied. Netgroup names can be used instead of client names in
most cases. Netgroup names may not be used in rw=list if there is also a
ro=list in the option string. This same type of entry can be used with the
ro option.

share Options for NFS File Systems

The options that can be used with NFS file systems only include:

24 NFS Administration Guide—November 1995

2

anon= uid

where uid is used to select the user ID of unauthenticated users. If uid is set
to -1, access is denied to unauthenticated users. Authentication is explained
further in Chapter 3, “Setting Up and Maintaining NFS Security.” Root
access can be granted by setting anon=0 , but this will allow
unauthenticated users to have root access, so use the root option instead.

root=host[:host]....

Root access is given to the hosts in the list. By default, no remote host is
given root access. Netgroup names can not be used with the root option.

Caution – Granting root access to other hosts has far-reaching security
implications; use the root= option with extreme caution.

nosuid

This option signals that all attempts to enable the setuid or setgid mode
should be ignored.

aclok

This option allows the NFS server to do access control for NFS Version 2
clients (running SunOS 2.4 or earlier releases). Without this option minimal
access is given to all clients. With this option maximal access is given to the
clients. For instance, with aclok set on the server, if anyone has read
permissions, then everyone does. See System Administration Guide, Volume I
for more information about ACLs.

Note – To take advantage of ACLs, it is best to have clients and servers run
software that supports the NFS Version 3 and NFS_ACL protocols. If the
software only supports the NFS Version 3 protocol, then clients will get correct
access, but will not be able to manipulate the ACLs. If the software supports
the NFS_ACL protocol, then the client will get correct access and the ability to
manipulate the ACLs. The Solaris 2.5 release supports both protocols.

!

NFS Administration 25

2

Using the share Command

To list the file systems that are shared on the local system, use the share
command without options. The -F FSType option used alone lists all of the file
systems of that specific type that are being shared.

The command below provides read-only access for most systems but allows
read-write access for rose and lilac :

In the next example, read-only access is assigned to any host in the eng
netgroup. The client rose is specifically given read-write access.

If both the ro=list and rw=list options are used, only the ro entry may
include a netgroup name. In the previous example, rw is used to add write
access for only one host. For more information about netgroups, see System
Administration Guide, Volume I.

Note – You cannot specify both rw and ro without arguments, and you cannot
specify the same client in the rw=list and the ro=list . If no read-write
option is specified, the default is read-write for all clients.

To share one file system with multiple clients, all options must be entered on
the same line, since multiple invocations of the share command on the same
object will “remember” only the last command run. This command will allow
read-write access to three client systems, but only rose and tulip are given
access to the file system as root.

share
- /export/share/man ro ""
- /usr/src rw=eng ""

share -F nfs -o ro,rw=rose:lilac /usr/src

share -F nfs -o ro=eng,rw=rose /usr/src

share -F nfs -o rw=rose:lilac:tulip,root=rose:tulip /usr/src

26 NFS Administration Guide—November 1995

2

unshare

This command allows you to make a previously available file system
unavailable for mounting by clients. The syntax of the command is:

unshare [-F FSType] [-o specific_options] [pathname]

where -F FSType indicates the type of file system that is to be made
unavailable, -o specific-options is a comma-separated list of options specific to
the file system, and pathname is the full name of the file system.

The unshare command can be used to unshare any file system—whether the
file system was shared explicitly with the share command or automatically
through /etc/dfs/dfstab . If you use the unshare command to unshare a
file system that you shared through the dfstab file, remember that it will be
shared again when you exit and re-enter run level 3. The entry for this file
system must be removed from the dfstab file if the change is to continue.

When you unshare an NFS file system, access from clients with existing
mounts is inhibited. The file system may still be mounted on the client, but the
files will not be accessible.

Using the unshare Command

This command unshares a specific file system:

shareall

This command allows for multiple file systems to be shared. When used with
no options, the command will share all entries in /etc/dfs/dfstab . The
syntax of the command is:

shareall [-F FSType[, FSType...]] [file]

where -F FSType is a list of file system types defined in /etc/dfs/fstypes
and file is a name of a file that lists share command lines. If file is not included
/etc/dfs/dfstab is checked. If a “- ” is used for file, then share commands
may be entered from standard input.

unshare /usr/src

NFS Administration 27

2

Using the shareall Command

This command shares all file systems listed in a local file:

unshareall

This command will make all currently shared resources unavailable. This is the
command syntax:

unshareall [-F FSType[, FSType...]

where -F FSType is a list of file system types defined in /etc/dfs/fstypes .
This flag allows you to choose only certain types of file systems to be
unshared. The default file system type is defined in /etc/dfs/fstypes . To
choose specific file systems, use the unshare command.

Using the unshareall Command

This example should unshare all NFS type file systems:

showmount

This command displays all the clients that have remotely mounted file systems
that are shared from an NFS server, or only the file systems that are mounted
by clients, or the shared file systems with the client access information. The
command syntax is:

showmount [-ade] [hostname]

where -a prints a list all of the remote mounts (each entry includes the client
name and the directory), -d prints a list of the directories that are remotely
mounted by clients, -e prints a list of the files shared (or exported), and
hostname selects the NFS server to gather the information from. If hostname is
not specified then the local host is queried.

shareall /etc/dfs/special_dfstab

unshareall -F nfs

28 NFS Administration Guide—November 1995

2

Using the showmount Command

This command lists all clients and the directory that they have mounted.

This command lists the directories that have been mounted.

This command lists file systems that have been shared.

setmnt

This command creates an /etc/mnttab table. The table is consulted by the
mount and umount commands. Generally, there is no reason to run this
command by hand; it is run automatically when a system is booted.

Other Useful Commands
These commands can be useful when troubleshooting NFS problems.

• “nfsstat” on page 29
• “pstack” on page 31
• “rpcinfo” on page 32
• “snoop” on page 34
• “truss” on page 35

showmount -a bee
lilac:/export/share/man
lilac:/usr/src
rose:/usr/src
tulip:/export/share/man

showmount -d bee
/export/share/man
/usr/src

showmount -e bee
/usr/src (everyone)
/export/share/man eng

NFS Administration 29

2

nfsstat

This command can be used to gather statistical information about NFS and
RPC connections. The syntax of the command is:

nfsstat [-cmnrsz]

where -c displays client side information, -m displays statistics for each NFS
mounted file system, -n specifies that NFS information is to be displayed (both
client and server side), -r displays RPC statistics, -s displays the server side
information, and -z specifies that the statistics should be set to zero. If no
options are supplied on the command line, the -cnrs options are used.

Gathering server side statistics can be very important for debugging problems
when new software or hardware are added to the computing environment.
Running this command, at least once a week, and storing the numbers will
provide a good history of previous performance.

30 NFS Administration Guide—November 1995

2

Using the nfsstat Command

This is an example of NFS server statistics. The first five lines deal with RPC
and the rest of them report NFS activities. In both sets of statistics knowing the

nfsstat -s

Server rpc:
Connection oriented:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
11420263 0 0 0 0 1428274 19
Connectionless:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
14569706 0 0 0 0 953332 1601

Server nfs:
calls badcalls
24234967 226
Version 2: (13073528 calls)
null getattr setattr root lookup readlink read
138612 1% 1192059 9% 45676 0% 0 0% 9300029 71% 9872 0% 1319897 10%
wrcache write create remove rename link symlink
0 0% 805444 6% 43417 0% 44951 0% 3831 0% 4758 0% 1490 0%
mkdir rmdir readdir statfs
2235 0% 1518 0% 51897 0% 107842 0%
Version 3: (11114810 calls)
null getattr setattr lookup access readlink read
141059 1% 3911728 35% 181185 1% 3395029 30% 1097018 9% 4777 0% 960503 8%
write create mkdir symlink mknod remove rmdir
763996 6% 159257 1% 3997 0% 10532 0% 26 0% 164698 1% 2251 0%
rename link readdir readdir+ fsstat fsinfo pathconf
53303 0% 9500 0% 62022 0% 79512 0% 3442 0% 34275 0% 3023 0%
commit
73677 0%

Server nfs_acl:
Version 2: (1579 calls)
null getacl setacl getattr access
0 0% 3 0% 0 0% 1000 63% 576 36%
Version 3: (45318 calls)
null getacl setacl
0 0% 45318 100% 0 0%

NFS Administration 31

2

average number of badcalls/calls and the number of calls/week, can help
identify when something is going wrong. The badcalls value reports the
number of bad messages from a client and can point out network hardware
problems.

Some of the connections generate write activity on the disks. A sudden
increase in these statistics could indicate trouble and should be investigated.
For NFS Version 2 statistics, the connections to pay special attention to are:
setattr, write, create, remove, rename, link, symlink, mkdir, and rmdir. For NFS
Version 3 statistics the value to watch is commit. If the commit level is high in
one NFS server as compared to another almost identical one, check to make
sure that the NFS clients have enough memory. The number of commit
operations on the server go up when clients do not have resources available.

pstack

This command displays a stack trace for each process. It must be run by root .
It can be used to determine where a process is hung, The only option allowed
with this command is the PID of the process that you want to check (see the
proc(1) man page).

Using the pstack Command

The example below is checking the nfsd process that is running.

It shows that the process is waiting for a request. This is a normal response for
a system that is not handling much NFS activity. If the stack shows that the
process is still in poll after a request is made, it is possible that the process is
hung. Please follow the instructions in “How to Restart NFS Services” on
page 57 to fix this problem. Review the instructions in “NFS Troubleshooting
Procedures” on page 53 to fully verify that your problem is a hung program.

/usr/proc/bin/pstack 243
243: /usr/lib/nfs/nfsd -a 16
 ef675c04 poll (24d50, 2, ffffffff)
 000115dc ???????? (24000, 132c4, 276d8, 1329c, 276d8, 0)
 00011390 main (3, efffff14, 0, 0, ffffffff, 400) + 3c8
 00010fb0 _start (0, 0, 0, 0, 0, 0) + 5c

32 NFS Administration Guide—November 1995

2

rpcinfo

This command generates information about the RPC service running on a
system. It can also be used to change the RPC service. There are many options
available with this command (see the rpcinfo(1M) man page). This is a
shortened synopsis for some of the options that can be used with the
command:

rpcinfo [-m | -s] [hostname]

rpcinfo [-t | -u] [hostname] [progname]

where -m displays a table of statistics of the rpcbind operations, -s displays
a concise list of all registered RPC programs, -t displays the RPC programs
that use TCP, -u displays the RPC programs that use UDP, hostname selects the
hostname of the server you need information from, and progname selects the
RPC program to gather information about. If no value is given for hostname,
then the local hostname is used. The RPC program number can be substituted
for progname, but many will remember the name and not the number. The -p
option can be used in place of the -s option on those systems which do not run
the NFS Version 3 software.

The data generated by this command can include:
• the RPC program number
• the version number for a specific program
• the transport protocol that is being used
• the name of the RPC service
• the owner of the RPC service

NFS Administration 33

2

Using the rpcinfo Command

This example gathers information on the RPC services running on a server. The
text generated by the command is filtered by the sort command to make it
more readable. Several lines listing RPC services have been deleted from the
example.

% rpcinfo -s bee |sort -n
 program version(s) netid(s) service owner
 100000 2,3,4 udp,tcp,ticlts,ticotsord,ticots portmapper superuser
 100001 4,3,2 ticlts,udp rstatd superuser
 100002 3,2 ticots,ticotsord,tcp,ticlts,udp rusersd superuser
 100003 3,2 tcp,udp nfs superuser
 100005 3,2,1 ticots,ticotsord,tcp,ticlts,udp mountd superuser
 100008 1 ticlts,udp walld superuser
 100011 1 ticlts,udp rquotad superuser
 100012 1 ticlts,udp sprayd superuser
 100021 4,3,2,1 ticots,ticotsord,ticlts,tcp,udp nlockmgr superuser
 100024 1 ticots,ticotsord,ticlts,tcp,udp status superuser
 100026 1 ticots,ticotsord,ticlts,tcp,udp bootparam superuser
 100029 2,1 ticots,ticotsord,ticlts keyserv superuser
 100068 4,3,2 tcp,udp cmsd superuser
 100078 4 ticots,ticotsord,ticlts kerbd superuser
 100083 1 tcp,udp - superuser
 100087 11 udp adm_agent superuser
 100088 1 udp,tcp - superuser
 100089 1 tcp - superuser
 100099 1 ticots,ticotsord,ticlts pld superuser
 100101 10 tcp,udp event superuser
 100104 10 udp sync superuser
 100105 10 udp diskinfo superuser
 100107 10 udp hostperf superuser
 100109 10 udp activity superuser

.

.
 100227 3,2 tcp,udp - superuser
 100301 1 ticlts niscachemgr superuser
 390100 3 udp - superuser
1342177279 1,2 tcp - 14072

34 NFS Administration Guide—November 1995

2

This example shows how to gather information about a particular RPC service
using a particular transport on a server.

The first example checks the mountd service running over TCP. The second
example checks the NFS service running over UDP.

snoop

This command is often used to watch for packets on the network. It must be
run as root . It is a good way to make sure that the network hardware is
functioning on both the client and the server. There are many options available
(see the snoop(1M) man page). A shortened synopsis of the command is given
below:

snoop [-d device] [-o filename] [host hostname]

where -d device specifies the local network interface, -o filename will store all
of the captured packets into the named file, and hostname indicates to only
display packets going to and from a specific host.

The -d device option is very useful on those servers which have multiple
network interfaces. There are many other expressions that can be used besides
setting the host. A combination of command expressions with grep can often
generate data that is specific enough to be useful.

When troubleshooting, make sure that packets are going to and from the host
that you expect them too. Also, look for error messages. Saving the packets to
a file can make it much easier to review the data.

% rpcinfo -t bee mountd
program 100005 version 1 ready and waiting
program 100005 version 2 ready and waiting
program 100005 version 3 ready and waiting
% rpcinfo -u bee nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting

NFS Administration 35

2

truss

This command can be used to see if a process is hung. It must be run by root .
There are many options that can be used with this command (see the
truss(1) man page). A shortened syntax of the command is:

truss [-t syscall] -p pid

where -t syscall selects system calls to trace, and -p pid indicates the PID of
the process to be traced. The syscall may be a comma-separated list of system
calls to be traced. Also, starting syscall with a ! selects to exclude the system
calls from the trace.

Using the truss Command

The example below shows that the process is waiting for another request for
service.

This is a normal response for a system that is not handling much NFS activity.
If the response does not change after a request has been made, it is possible
that the process is hung. Please follow the instructions in “How to Restart NFS
Services” on page 57 to fix the hung program. Review the instructions in “NFS
Troubleshooting Procedures” on page 53 to fully verify that your problem is a
hung program.

Automatic File System Sharing
Servers provide access to their file systems by sharing them over the NFS
environment. You specify which file systems are to be shared with the share
command and/or the /etc/dfs/dfstab file.

Entries in the /etc/dfs/dfstab file are shared automatically whenever you
start NFS server operation. You should set up automatic sharing if you need to
share the same set of file systems on a regular basis. For example, if your
computer is a server that supports diskless clients, you need to make your
clients’ root directories available at all times.

/usr/bin/truss -p 243
poll(0x00024D50, 2, -1) (sleeping...)

36 NFS Administration Guide—November 1995

2

The dfstab file lists all the file systems that your server shares with its clients
and controls which clients may mount a file system. If you want to modify
dfstab to add or delete a file system or to modify the way sharing is done,
simply edit the file with any supported text editor (such as vi). The next time
the computer enters run level 3, the system reads the updated dfstab to
determine which file systems should be shared automatically.

Each line in the dfstab file consists of a share command—the same
command you would enter at the command line prompt to share the file
system. The share command is located in /usr/sbin .

1. Edit the /etc/dfs/dfstab file.
Add one entry to the file for each file system that you want to have shared
automatically. Each entry must be on a line by itself in the file and uses this
syntax:

2. Make sure that the NFS software is running on the server.
If this is the first share command or set of share commands that you have
initiated, it is likely that the NFS daemons are not running. The following
commands kill the daemons and restart them.

This ensures that NFS software is now running on the servers and will restart
automatically when the server is at run level 3 during boot.

At this point, set up your autofs maps so clients can access the file systems
you’ve shared on the server. See “Setting Up Autofs Maps” on page 65.

Mounting at Boot Time
If you want to mount file systems at boot time instead of using autofs maps,
follow this procedure. Although this procedure must be followed for all local
file systems, it is not recommended for remote file systems, because it must be
completed on every client.

♦ Edit the /etc/vfstab file.

share [-F nfs] [-o specific- options] [-d description] pathname

/etc/init.d/nfs.server stop
/etc/init.d/nfs.server start

NFS Administration 37

2

Entries in the /etc/vfstab file have the following syntax:

special fsckdev mountp fstype fsckpass mount-at-boot mntopts

Example of a vfstab entry

You want a client computer to mount the /var/mail directory on the server
wasp. You would like it mounted as /var/mail on the client. You want the
client to have read-write access. Add the following entry to the client’s vfstab
file.

Warning – NFS Servers should not have NFS vfstab entries because of a
potential dead-lock. The NFS server software is started after the entries in
/etc/vfstab are checked, so that if you have two servers go down at the
same time which are mounting file systems from the other, each system could
hang as the systems reboot.

Mounting on the Fly
To manually mount a file system during normal operation, run the mount
command as superuser:

In this case the /export/share/stuff file system from the server bee is
mounted on read-only /mnt on the local system. This will allow for temporary
viewing of the file system. The file system can be unmounted with umount or
by rebooting the local host.

wasp:/var/mail - /var/mail nfs - yes rw

mount -F nfs -r -o bee:/export/share/stuff /mnt

!

38 NFS Administration Guide—November 1995

2

Mounting with the Automounter
Chapter 5, “Using Autofs,” includes the specific instructions for establishing
and supporting mounts with the automounter. Without any changes to the
generic system, remote file systems should be accessible through the /net
mount point. To mount the /export/share/stuff file system from the
previous example, all you would need to do is:

Since the automounter allows all users to mount file systems, root access is not
required. It also provides for automatic unmounting of file systems, so there is
no need to unmount file systems after you are done.

% cd /net/bee/export/share/stuff

39

Setting Up and Maintaining NFS
Security 3

This chapter discusses Secure NFS. It includes a description of the transactions
between a server and a client using DES authentication and presents the
administration procedures that are needed to set up and administer Secure
NFS.

Secure NFS
The NFS environment is a powerful and convenient way to share file systems
on a network of different computer architectures and operating systems.
However, the same features that make sharing file systems through NFS
operation convenient also pose some security problems. An NFS server
authenticates a file request by authenticating the computer making the request,
but not the user when using UNIX authentication. When using UNIX
authentication, a client user can run su and impersonate the owner of a file. If
DES authentication is used, the NFS server will authenticate the user, making
this sort of impersonation much harder.

Given root access and knowledge of network programming, anyone is capable
of introducing arbitrary data into the network and picking up any data from
the network. The most dangerous attacks are those involving the introduction
of data, such as impersonating a user by generating the right packets or

Secure RPC page 40

AUTH_DES Client-Server Session page 42

Administering Secure NFS page 47

40 NFS Administration Guide—November 1995

3

recording “conversations” and replaying them later. These attacks affect data
integrity. Attacks involving passive eavesdropping—merely listening to
network traffic without impersonating anybody—are not as dangerous, since
data integrity is not compromised. Users can protect the privacy of sensitive
information by encrypting data that goes over the network.

A common approach to network security problems is to leave the solution to
each application. A better approach is to implement a standard authentication
system at a level that covers all applications.

The Solaris operating system includes an authentication system at the level of
remote procedure call (RPC)—the mechanism on which NFS operation is built.
This system, known as Secure RPC, greatly improves the security of network
environments and provides additional security to services such as the NFS
system. When the NFS system uses the facilities provided by Secure RPC, it is
known as Secure NFS.

Secure RPC
Secure RPC is fundamental to Secure NFS. The goal of Secure RPC is to build
a system at least as secure as a time-sharing system (one in which all users
share a single computer). A time-sharing system authenticates a user through a
login password. With Data Encryption Standard (DES) authentication, the
same is true. Users can log in on any remote computer just as they can on a
local terminal, and their login passwords are their passports to network
security. In a time-sharing environment, the system administrator has an
ethical obligation not to change a password in order to impersonate someone.
In Secure RPC, the network administrator is trusted not to alter entries in a
database that stores public keys.

You need to be familiar with two terms to understand an RPC authentication
system: credentials and verifiers. Using ID badges as an example, the credential
is what identifies a person: a name, address, birthday, and so on. The verifier is
the photo attached to the badge: you can be sure the badge has not been stolen
by checking the photo on the badge against the person carrying it. In RPC, the
client process sends both a credential and a verifier to the server with each
RPC request. The server sends back only a verifier because the client already
knows the server’s credentials.

Setting Up and Maintaining NFS Security 41

3

RPC’s authentication is open ended, which means that a variety of
authentication systems may be plugged into it. Currently, there are three
systems: UNIX, DES, and KERB (for Kerberos Version 4).

When UNIX authentication is used by a network service, the credentials
contain the client’s hostname, UID, GID, and group-accesslist, but the verifier
contains nothing. Because there is no verifier, a superuser could deduce
appropriate credentials, using commands such as su . Another problem with
UNIX authentication is that it assumes all computers on a network are UNIX
computers. UNIX authentication breaks down when applied to other operating
systems in a heterogeneous network.

To overcome the problems of UNIX authentication, Secure RPC uses DES
authentication—a scheme that employs verifiers, yet allows Secure RPC to be
general enough to be used by most operating systems.

DES Authentication

DES authentication uses the Data Encryption Standard (DES) and Diffie-
Hellman public-key cryptography to authenticate both users and computers in
the network. DES is a standard encryption mechanism; Diffie-Hellman public-
key cryptography is a cipher system that involves two keys: one public and
one secret. The public and secret keys are stored in the namespace. NIS stores
the keys in the publickey map, and NIS+ stores the keys in the cred table.
These maps contain the public key and secret key for all potential users. See
System Administration Guide, Volume I, for more information on how to set up
the maps and tables.

The security of DES authentication is based on a sender’s ability to encrypt the
current time, which the receiver can then decrypt and check against its own
clock. The time stamp is encrypted with DES. There are two requirements for
this scheme to work:

• The two agents must agree on the current time
• The sender and receiver must be using the same encryption key

If a network runs a time-synchronization program, then the time on the client
and the server is synchronized automatically. If a time synchronization
program is not available, time stamps can be computed using the server’s time
instead of the network time. The client asks the server for the time before
starting the RPC session, then computes the time difference between its own
clock and the server’s. This difference is used to offset the client’s clock when

42 NFS Administration Guide—November 1995

3

computing time stamps. If the client and server clocks get out of sync to the
point where the server begins to reject the client’s requests, the DES
authentication system on the client resynchronizes with the server.

The client and server arrive at the same encryption key by generating a
random conversation key, also known as the session key, and then using public-
key cryptography to deduce a common key. The common key is a key that only
the client and server are capable of deducing. The conversation key is used to
encrypt and decrypt the client’s time stamp; the common key is used to
encrypt and decrypt the conversation key.

KERB Authentication

Kerberos is an authentication system developed at MIT. Encryption in Kerberos
is based on DES.

Kerberos works by authenticating the user’s login password. A user types the
kinit command, which obtains a ticket that is valid for the time of the session
(or eight hours, the default session time) from the authentication server. When
the user logs out, the ticket may be destroyed using the kdestroy command.

The Kerberos server software is available from MIT Project Athena, and is not
part of the SunOS software. SunOS software provides

• Routines used by the client to create, acquire, and verify tickets
• An authentication option to Secure RPC
• A client-side daemon, kerbd

See System Administration Guide, Volume I, for more details.

AUTH_DES Client-Server Session
This section describes the series of transactions in a client-server session using
DES authorization (AUTH_DES).

Generating the public and secret keys
Sometime prior to a transaction, the administrator runs a program, either
newkey or nisaddcred that generates a public key and a secret key. (Each
user has a unique public key and secret key.) The public key is stored in a
public database; the secret key is stored in encrypted form, in the same
database. To change the key pair, use the chkey command.

Setting Up and Maintaining NFS Security 43

3

Running keylogin

Normally, the login password is identical to the secure RPC password. In this
case, a keylogin is not required. If the passwords are different, the users have
to log in, and then do a keylogin explicitly.

The keylogin program prompts the user for a secure RPC password and uses
the password to decrypt the secret key. The keylogin program then passes
the decrypted secret key to a program called the keyserver. (The keyserver is an
RPC service with a local instance on every computer.) The keyserver saves the
decrypted secret key and waits for the user to initiate a secure RPC transaction
with a server.

If the passwords are the same, the login process passes the secret key to the
keyserver. If the passwords are required to be different and the user must
always run keylogin , then the keylogin program may be included in the
user’s environment configuration file, such as ~/.login , ~/.cshrc , or
~/.profile , so that it runs automatically whenever the user logs in.

Generating the Conversation Key
When the user initiates a transaction with a server:

1. The keyserver randomly generates a conversation key.

2. The kernel uses the conversation key to encrypt the client’s time stamp
(among other things).

3. The keyserver looks up the server’s public key in the public-key database
(see the publickey(4) man page).

4. The keyserver uses the client’s secret key and the server’s public key to
create a common key.

5. The keyserver encrypts the conversation key with the common key.

First Contact with the Server

The transmission including the encrypted time stamp and the encrypted
conversation key is then sent to the server. The transmission includes a
credential and a verifier. The credential contains three components:

• The client’s net name
• The conversation key, encrypted with the common key
• A “window,” encrypted with the conversation key

44 NFS Administration Guide—November 1995

3

The window is the difference the client says should be allowed between the
server’s clock and the client’s time stamp. If the difference between the
server’s clock and the time stamp is greater than the window, the server would
reject the client’s request. Under normal circumstances this will not happen
because the client first synchronizes with the server before starting the RPC
session.

The client’s verifier contains:

• The encrypted time stamp
• An encrypted verifier of the specified window, decremented by 1

The window verifier is needed in case somebody wants to impersonate a user
and writes a program that, instead of filling in the encrypted fields of the
credential and verifier, just stuffs in random bits. The server will decrypt the
conversation key into some random key and use it to try to decrypt the
window and the time stamp. The result will be random numbers. After a few
thousand trials, however, there is a good chance that the random
window/time stamp pair will pass the authentication system. The window
verifier makes guessing the right credential much more difficult.

Decrypting the Conversation Key

When the server receives the transmission from the client:

1. The keyserver local to the server looks up the client’s public key in the
publickey database.

2. The keyserver uses the client’s public key and the server’s secret key to
deduce the common key—the same common key computed by the client.
(Only the server and the client can calculate the common key because doing
so requires knowing one secret key or the other.)

3. The kernel uses the common key to decrypt the conversation key.

4. The kernel calls the keyserver to decrypt the client’s time stamp with the
decrypted conversation key.

Storing Information on the Server

After the server decrypts the client’s time stamp, it stores four items of
information in a credential table:

• The client’s computer name

Setting Up and Maintaining NFS Security 45

3

• The conversation key
• The window
• The client’s time stamp

The server stores the first three items for future use. It stores the time stamp to
protect against replays. The server accepts only time stamps that are
chronologically greater than the last one seen, so any replayed transactions are
guaranteed to be rejected.

Note – Implicit in these procedures is the name of the caller, who must be
authenticated in some manner. The keyserver cannot use DES authentication to
do this because it would create a deadlock. To solve this problem, the
keyserver stores the secret keys by UID and grants requests only to local root
processes.

Verifier Returned to the Client

The server returns a verifier to the client, which includes:

• The index ID, which the server records in its credential cache
• The client’s time stamp minus 1, encrypted by conversation key

The reason for subtracting 1 from the time stamp is to ensure that the time
stamp is invalid and cannot be reused as a client verifier.

Client Authenticates the Server

The client receives the verifier and authenticates the server. The client knows
that only the server could have sent the verifier because only the server knows
what time stamp the client sent.

Additional Transactions

With every transaction after the first, the client returns the index ID to the
server in its second transaction and sends another encrypted time stamp. The
server sends back the client’s time stamp minus 1, encrypted by the
conversation key.

You should be aware of the following points if you plan to use Secure RPC:

• If a server crashes when no one is around (after a power failure for
example), all the secret keys that are stored on the system are wiped out.
Now no process is able to access secure network services or mount an NFS

46 NFS Administration Guide—November 1995

3

file system. The important processes during a reboot are usually run as root,
so things would work if root’s secret key were stored away, but nobody is
available to type the password that decrypts it. keylogin -r allows root
to store the clear secret key in /etc/.rootkey which keyserv reads.

• Some systems boot in single-user mode, with a root login shell on the
console and no password prompt. Physical security is imperative in such
cases.

• Diskless computer booting is not totally secure. Somebody could
impersonate the boot server and boot a devious kernel that, for example,
makes a record of your secret key on a remote computer. Secure NFS
provides protection only after the kernel and the keyserver are running.
Before that, there is no way to authenticate the replies given by the boot
server. This could be a serious problem, but it requires a sophisticated
attack, using kernel source code. Also, the crime would have evidence. If
you polled the network for bootservers, you would discover the devious
bootserver’s location.

• Most setuid programs are owned by root; if root’s secret key is stored in
/etc/.rootkey , these programs behave as they always have. If a setuid
program is owned by a user, however, it may not always work. For example,
if a setuid program is owned by dave and dave has not logged into the
computer since it booted, then the program would not be able to access
secure network services.

• If you log in to a remote computer (using login , rlogin , or telnet) and
use keylogin to gain access, you give away access to your account. This is
because your secret key gets passed to that computer’s keyserver, which
then stores it. This is only a concern if you don’t trust the remote computer.
If you have doubts, however, don’t log in to a remote computer if it requires
a password. Instead, use the NFS environment to mount file systems shared
by the remote computer. As an alternative, you can use keylogout to
delete the secret key from the keyserver.

• If a home directory is shared with the -o secure or -o kerberos
options, then remote logins can be a problem. If the /etc/hosts.equiv or
~/.rhosts files are set to not prompt for a password, the login will
succeed, but the user will not be able to access their home directory since no
authentication has occurred locally. If the user is prompted for a password,
then as long as the password matches the network password, the user will
have access to their home directory.

Setting Up and Maintaining NFS Security 47

3

Administering Secure NFS
To use Secure NFS, all the computers you are responsible for must have a
domain name. A domain is an administrative entity, typically consisting of
several computers, that joins a larger network. If you are running NIS+, you
should also establish the NIS+ name service for the domain. See NIS+ and DNS
Setup and Configuration Guide.

With UNIX authentication a universal flat name space is assumed. UIDs are
normally unique within a domain but may not be unique across domains. A
problem with this scheme is that UIDs clash when domains are linked across
the network. Another problem with UNIX authentication has to do with
superusers; with UNIX authentication, the superuser ID (UID 0) is in effect
assigned one per computer, not one per domain. Therefore, a domain can have
multiple superusers—all with the same UNIX UID.

DES authentication corrects these problems by using netnames. A netname is a
string of printable characters created by concatenating the name of the
operating system, a user ID, and a domain name. For example, a UNIX system
user with a user ID of 508 in the domain eng.acme.com would be assigned
the following netname unix.508@eng.acme.com . Because user IDs must be
unique within a domain and because domain names must be unique on a
network, this scheme produces a unique netname for every user.

To overcome the problem of multiple superusers per domain, netnames are
assigned to computers as well as to users. A computer’s netname is formed
much like a user’s—by concatenating the name of the operating system and
the computer name with the domain name. The root user on a UNIX computer
named hal in the domain eng.acme.com would have the netname
unix.hal@eng.acme.com .

▼ How to Set Up Secure NFS

1. Assign your domain a domain name, and make the domain name known
to each computer in the domain.
See the NIS+ and FNS Administration Guide if you are using NIS+ as your
name service.

48 NFS Administration Guide—November 1995

3

2. Establish public keys and secret keys for your clients’ users using the
newkey or nisaddcred command, and have each user establish his or her
own secure RPC password using the chkey command.

Note – For information about these commands, see the newkey(1M) , the
nisaddcred(1M) , and the chkey(1) man pages.

When public and secret keys have been generated, the public and encrypted
secret keys are stored in the publickey database.

3. Verify that the name service is responding. If you are running NIS+, type
the following:

If you are running NIS, verify that the ypbind daemon is running.

4. Verify that the keyserv daemon (the keyserver) is running, type the
following:

If it isn’t running, to start the keyserver, type the following:

5. Run keylogin to decrypt and store the secret key.
Usually, the login password is identical to the network password. In this
case, keylogin is not required. If the passwords are different, the users
have to log in, and then do a keylogin . You still need to use the keylogin
-r command as root to store the decrypted secret key in /etc/.rootkey .

nisping -u
Last updates for directory eng.acme.com. :
Master server is eng-master.acme.com.
 Last update occurred at Mon Jun 5 11:16:10 1995

Replica server is eng1-replica-replica-58.acme.com.
 Last Update seen was Mon Jun 5 11:16:10 1995

ps -ef | grep keyserv
root 100 1 16 Apr 11 ? 0:00 /usr/sbin/keyserv
root 2215 2211 5 09:57:28 pts/0 0:00 grep keyserv

/usr/sbin/keyserv

Setting Up and Maintaining NFS Security 49

3

Note – keylogin -r will only need to be run if the root secret key changes or
/etc/.rootkey is lost.

6. Edit the /etc/dfs/dfstab file and add the secure option to the
appropriate entries (for DES authentication).

For KERB authentication, add the kerberos option.

7. Edit the auto_master data to include secure as a mount option in the
appropriate entries (for DES authentication):

For KERB authentication, add the kerberos option.

Note – With Version 2 NFS software, if a client does not mount as secure a
file system that is shared as secure, users have access as user nobody , rather
than as themselves. With Version 3, the secure flag will be inherited from the
NFS server, so there is no need for the clients to specify kerberos or secure .
The users will have access to the files as themselves.

When you reinstall, move, or upgrade a computer, remember to save
/etc/.rootkey if you don’t establish new keys or change them for root. If
you do delete /etc/.rootkey , you can always type:

share -F nfs -o secure /export/home

share -F nfs -o kerberos /export/home

/home auto_home -nosuid,secure

/home auto_home -nosuid,kerberos

keylogin -r

50 NFS Administration Guide—November 1995

3

51

NFS Troubleshooting 4

This chapter describes problems that may occur on computers using NFS
services. It contains procedures for fixing and tracking NFS problems. A
reference section is also included. If you want to skip the background
information that explains NFS internals and proceed directly to step-by-step
instructions, use the following table to find the page where instructions for
specific tasks begin.

Strategies for NFS Troubleshooting
When tracking down an NFS problem, keep in mind that there are three main
points of possible failure: the server, the client, and the network. The strategy
outlined in this section tries to isolate each individual component to find the
one that is not working. In all cases, the mountd and nfsd daemons must be
running on the server for remote mounts to succeed.

Strategies for NFS Troubleshooting page 51

NFS Troubleshooting Procedures page 53

How to Check Connectivity on a NFS Client page 53

How to Remotely Check the NFS Server page 54

How to Verify the NFS Service on the Server page 55

How to Restart NFS Services page 57

How to Warm Start rpcbind page 58

Common NFS Error Messages page 58

52 NFS Administration Guide—November 1995

4

Note – The mountd and nfsd daemons start automatically at boot time only if
there are NFS share entries in the /etc/dfs/dfstab file. Therefore, mountd
and nfsd must be started manually when setting up sharing for the first time.

The intr option is set by default for all mounts. If a program hangs with a
“server not responding” message, it can be killed with the keyboard interrupt
Control-c.

When the network or server has problems, programs that access hard-mounted
remote files will fail differently than those that access soft-mounted remote
files. Hard-mounted remote file systems cause the client’s kernel to retry the
requests until the server responds again. Soft-mounted remote file systems
cause the client’s system calls to return an error after trying for a while.
Because these errors may result in unexpected application errors, soft
mounting is not recommended.

When a file system is hard mounted, a program that tries to access it hangs if
the server fails to respond. In this case, the NFS system displays the following
message on the console.

When the server finally responds, the following message appears on the
console.

A program accessing a soft-mounted file system whose server is not
responding will generate the following message:

Note – Because of possible errors, do not soft-mount file systems with read-
write data or file systems from which executables will be run. Writable data
could be corrupted if the application ignores the errors. Mounted executables
may not load properly and can fail.

NFS server hostname not responding still trying

NFS server hostname ok

NFS operation failed for server hostname: error # (error_message)

NFS Troubleshooting 53

4

NFS Troubleshooting Procedures
To determine where the NFS service has failed, it is necessary to follow several
procedures to isolate the failure. The following items need to be checked:

• Can the client reach the server?
• Can the client contact the NFS services on the server?
• Are the NFS services running on the server?

In the process of checking these items it may become apparent that other
portions of the network are not functioning, such as the name service or the
physical network hardware. Debugging procedures for the NIS+ name service
are found in NIS+ and FNS Administration Guide. Also, during the process it
may become obvious that the problem isn’t at the client end (for instance, if
you get at least one trouble call from every subnet in your work area). In this
case, it is much more timely to assume that the problem is the server or the
network hardware near the server, and start the debugging process at the
server not at the client.

▼ How to Check Connectivity on a NFS Client

1. Make sure that the NFS server is reachable from the client. On the client,
type the following command.

If the command reports that the server is alive, remotely check the NFS
server (see “How to Remotely Check the NFS Server” on page 54).

2. If the server is not reachable from the client, make sure that the local
name service is running. For NIS+ clients type the following:

% /usr/sbin/ping bee
bee is alive

% /usr/lib/nis/nisping -u
Last updates for directory eng.acme.com. :
Master server is eng-master.acme.com.
 Last update occurred at Mon Jun 5 11:16:10 1995

Replica server is eng1-replica-58.acme.com.
 Last Update seen was Mon Jun 5 11:16:10 1995

54 NFS Administration Guide—November 1995

4

3. If the name service is running, but the server is not reachable from the
client, run the ping command from another client.
If the command run from a second client fails, see “How to Verify the NFS
Service on the Server” on page 55.

4. If the server is reachable from the second client, use ping to check
connectivity of the first client to other systems on the local net.
If this fails, check the networking software configuration on the client
(/etc/netmasks , /etc/nsswitch.conf, and so forth).

5. If the software is correct, check the networking hardware.
Try moving the client onto a second net drop.

▼ How to Remotely Check the NFS Server

1. Check that the server’s nfsd processes are responding. On the client, type
the following command.

If the server is running, it prints a list of program and version numbers.
Using the -t option will test the TCP connection. If this fails, skip to “How
to Verify the NFS Service on the Server” on page 55.

2. Check that the server’s mountd is responding, by typing the following
command.

Using the -t option will test the TCP connection. If either fails, skip to
“How to Verify the NFS Service on the Server” on page 55.

% /usr/bin/rpcinfo -u bee nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting

% /usr/bin/rpcinfo -u bee mountd
program 100005 version 1 ready and waiting
program 100005 version 2 ready and waiting
program 100005 version 3 ready and waiting

NFS Troubleshooting 55

4

3. Check the local autofs service, if it is being used:

Choose a /net or /home mount point that you know should work properly.
If this doesn’t work, then as root on the client, type the following to restart
the autofs service.

4. Verify that file system is shared as expected on the server.

Check the entry on the server and the local mount entry for errors. Also
check the name space. In this instance, if the first client is not in the eng
netgroup, then they would not be able to mount the /usr/src file system.

Make sure to check the entries in all of the local files that include mounting
information. The list includes /etc/vfstab and all of the /etc/auto_*
files.

▼ How to Verify the NFS Service on the Server

1. Log onto the server as root.

2. Make sure that the server can reach the clients.

% cd /net/wasp

/etc/init.d/autofs stop
/etc/init.d/autofs start

% /usr/sbin/showmount -e bee
/usr/src eng
/export/share/man (everyone)

ping lilac
lilac is alive

56 NFS Administration Guide—November 1995

4

3. If the client is not reachable from the server, make sure that the local
name service is running. For NIS+ clients type the following:

4. If the the name service is running, check the networking software
configuration on the server (/etc/netmasks , /etc/nsswitch.conf,
and so forth).

5. Type the following command to check whether the nfsd daemon is
running.

Also use the -t option with rpcinfo to check the TCP connection. If these
commands fail, restart the NFS service (see “How to Restart NFS Services”
on page 57).

% /usr/lib/nis/nisping -u
Last updates for directory eng.acme.com. :
Master server is eng-master.acme.com.
 Last update occurred at Mon Jun 5 11:16:10 1995

Replica server is eng1-replica-58.acme.com.
 Last Update seen was Mon Jun 5 11:16:10 1995

rpcinfo -u localhost nfs
program 100003 version 2 ready and waiting
program 100003 version 3 ready and waiting
ps -ef | grep nfsd
root 232 1 0 Apr 07 ? 0:01 /usr/lib/nfs/nfsd -a 16
root 3127 24621 09:32:57 pts/3 0:00 grep nfsd

NFS Troubleshooting 57

4

6. Type the following command to check whether the mountd daemon is
running.

Also use the -t option with rpcinfo to check the TCP connection. If these
commands fail, restart the NFS service (see “How to Restart NFS Services”
on page 57).

7. Type the following command to check whether the rpcbind daemon is
running.

If rpcbind seems to be hung, either reboot the server or follow the steps in
“How to Warm Start rpcbind” on page 58.

▼ How to Restart NFS Services

♦ To enable daemons without rebooting, become superuser and type the
following commands.

This will stop the daemons and restart them, if there is an entry in
/etc/dfs/dfstab .

/usr/bin/rpcinfo -u localhost mountd
program 100005 version 1 ready and waiting
program 100005 version 2 ready and waiting
program 100005 version 3 ready and waiting
ps -ef | grep mountd
root 145 1 0 Apr 07 ? 21:57 /usr/lib/autofs/automountd
root 234 1 0 Apr 07 ? 0:04 /usr/lib/nfs/mountd
root 3084 24621 09:30:20 pts/3 0:00 grep mountd

/usr/bin/rpcinfo -u localhost rpcbind
program 100000 version 1 ready and waiting
program 100000 version 2 ready and waiting
program 100000 version 3 ready and waiting

/etc/init.d/nfs.server stop
/etc/init.d/nfs.server start

58 NFS Administration Guide—November 1995

4

▼ How to Warm Start rpcbind

If the NFS server can not be rebooted because of work in progress, it is possible
to restart rpcbind without having to restart all of the services which use RPC
by completing a warm start as described below.

1. As root on the server, get the PID for rpcbind .
Run ps to get the PID (which will be the value in the second column).

2. Send a SIGTERM signal to the rpcbind process.
In this example, term is the signal that is to be sent and 115 is the PID for the
program (see the kill(1) man page). This will cause rpcbind to create a
list of the current registered services in /tmp/portmap.file and
/tmp/rpcbind.file .

Note – If the rpcbind process is not killed with the -s option, then a warm
start of rpcbind is not possible.

3. Restart rpcbind .
Do a warm restart of the command so that the files created by the kill
command are consulted, so that the process resumes without requiring that
all of the RPC services be restarted (see the rpcbind(1M) man page).

Common NFS Error Messages

mount: ... server not responding:RPC_PMAP_FAILURE - RPC_TIMED_OUT

The server sharing the file system you are trying to mount is down or
unreachable, at the wrong run level, or its rpcbind is dead or hung.

ps -ef |grep rpcbind
 root 115 1 0 May 31 ? 0:14 /usr/sbin/rpcbind
 root 13000 6944 0 11:11:15 pts/3 0:00 grep rpcbind

kill -s term 115

/usr/sbin/rpcbind -w

NFS Troubleshooting 59

4

mount: ... server not responding: RPC_PROG_NOT_REGISTERED

mount registered with rpcbind, but the NFS mount daemon mountd is not
registered.

mount: ... No such file or directory

Either the remote directory or the local directory does not exist. Check the
spelling of the directory names. Run ls on both directories.

mount: ...: Permission denied

Your computer name may not be in the list of clients or netgroup allowed
access to the file system you want to mount. Use showmount -e to verify
the access list.

NFS server hostname not responding still trying

If programs hang while doing file-related work, your NFS server may be
dead. This message indicates that NFS server hostname is down or that there
is a problem with the server or with the network. Start with “How to Check
Connectivity on a NFS Client” on page 53.

NFS fsstat failed for server hostname: RPC: Authentication error

This error can be caused by many situations. One of most difficult to debug
is when this occurs because a user is in too many groups. Currently a user
may be in as many as 16 groups but no more if they are accessing files
through NFS mounts. If a user must have the functionality of being in more
than 16 groups and if Solaris 2.5 is running on the NFS server and the NFS
clients, then use ACLs to provide the needed access privileges.

60 NFS Administration Guide—November 1995

4

61

Using Autofs 5

This chapter tells you how to use autofs, a new implementation of automatic
mounting. It includes some common scenarios for use of autofs and how to
design autofs maps to best meet your needs for accessing file systems.

How Autofs Works
Autofs is a client-side service. When a client attempts to access a file system
that is not presently mounted, the autofs file system intercepts the request and
calls automountd , to mount the requested directory. The automountd
daemon locates the directory, mounts it within autofs, and replies. On
receiving the reply, autofs allows the waiting request to proceed. Subsequent
references to the mount are redirected by the autofs—no further participation
is required by automountd .

How Autofs Works page 61

Autofs Programs page 64

Setting Up Autofs Maps page 65

Autofs Reference page 86

Common Tasks and Procedures page 89

Troubleshooting Autofs page 97

62 NFS Administration Guide—November 1995

5

Three components that work together to accomplish automatic mounting are:

• The automount command
• The autofs file system
• The automountd daemon

The automount command, called at system startup time, reads the master
map file auto_master to create the initial set of autofs mounts. These autofs
mounts are not automatically mounted at startup time. They are points under
which file systems will be mounted in the future.

Once the autofs mounts are set up, they can trigger file systems to be mounted
under them. For example, when autofs receives a request to access a file system
that is not currently mounted, autofs calls automountd , which actually
mounts the requested file system.

With this new implementation of automatic mounting the automountd
daemon is completely independent from the automount command. Because of
this separation, it’s possible to add, delete, or change map information without
first having to stop and start the automountd daemon process. Once the file
system is mounted, further access does not require any action from
automountd .

After initially mounting autofs mounts, the automount command is used to
keep autofs mounts as necessary by comparing the list of mounts in the
auto_master map with the list of mounted file systems in the mount table
file /etc/mnttab (formerly /etc/mtab) and making the appropriate
changes. This allows system administrators to change mount information
within auto_master and have those changes used by the autofs processes
without having to stop and restart the autofs daemons.

Unlike mount , automount does not read the /etc/vfstab file (which is
specific to each computer) for a list of file systems to mount. The automount
command is controlled within a domain and on computers through the
namespace or local files.

This is a simplified overview of how autofs works:

The automount daemon automountd starts at boot time from the
/etc/init.d/autofs script. This script also runs the automount command,
which reads the master map (see “How Autofs Navigates Through the
Network (Maps)” on page 69) and installs autofs mount points.

Using Autofs 63

5

Figure 5-1 /etc/init.d/autofs Script Starts automount

Autofs is a kernel file system that supports automatic mounting and
unmounting.

When a request is made to access a file system at an autofs mount point:

1. Autofs intercepts the request.

2. Autofs sends a message to the automountd for the requested file system to
be mounted.

3. automountd locates the file system information in a map and performs the
mount.

4. Autofs allows the intercepted request to proceed.

5. Autofs unmounts the file system after five minutes of inactivity.

Note – Mounts managed through the autofs service should not be manually
mounted or unmounted. Even if the operation is successful, the autofs service
will not know that the object has been unmounted resulting in possible
inconsistency. A reboot will clear all of the autofs mount points, if the service is
confused by manual interaction.

Autofs
mounts

mount/unmount automountd

64 NFS Administration Guide—November 1995

5

Autofs Programs

automount

This command installs autofs mount points and associates the information in
the automaster files with each mount point. The syntax of the command is:

automount [-t duration] [-v]

where -t duration sets the time, in seconds, that a file system is to remain
mounted, and -v selects the verbose mode. Running this command in the
verbose mode allows for easier troubleshooting.

If not specifically set, the value for duration is set to 5 minutes. In most
circumstances this is a good value, however, on systems which have many
automounted file systems, it can be necessary to increase the duration value. In
particular, if a server has many users active checking the automounted file
systems every five minutes can be inefficient. Checking the autofs file systems
every 1800 seconds (or 30 minutes) could be more optimal. By not unmounting
the file systems every 5 minutes, it is possible that /etc/mnttab which is
checked by df can get very large. The output from df can be filtered by using
the -F option (see the df(1B) man page) or by using egrep to help fix this
problem.

Another factor to consider is that changing the duration also changes how
quickly changes to the automounter maps will be reflected.

automountd

This daemon handles the mount and unmount requests from the autofs
service. The syntax of the command is:

automountd [-Tv] [-D name=value]

where -T selects to display each RPC call to standard output, -v selects to log
all status messages to the console, and -D name=value substitutes value for the
automount map variable indicated by name. The -T option is only
recommended for troubleshooting.

Using Autofs 65

5

Setting Up Autofs Maps
Autofs uses three types of maps:

• Master maps
• Direct maps
• Indirect maps

Master Maps

The auto_master map associates a directory with a map. It is a master list
specifying all the maps that autofs should know about.

Each line in the master map /etc/auto_master has the following syntax:

mount-point map-name [mount-options]

mount-point

mount-point is the full (absolute) path name of a directory. If the directory
does not exist, autofs creates it if possible. If the directory exists and is not
empty, mounting on it hides its contents. In this case, autofs issues a
warning message.

map-name

map-name is the map autofs uses to find directions to locations, or mount
information. If the name is preceded by a slash (/), autofs interprets the
name as a local file. Otherwise, autofs searches for the mount information
using the search specified in the name service switch configuration file.

mount-options

mount-options is an optional, comma-separated list of options that apply to
the mounting of the entries specified in map-name, unless the entries in map-
name list other options. The mount-options are the same as those for a
standard NFS mount , except that bg (background) and fg (foreground) do
not apply. See mount on page 15.

A line beginning with # is a comment. Everything that follows until the end of
the line is ignored.

To split long lines into shorter ones, put a backslash (\) at the end of the line.

66 NFS Administration Guide—November 1995

5

The notation /- as a mount point indicates that the map in question is a direct
map, and no particular mount point is associated with the map as a whole.

Direct Maps

A direct map is an automount point. With a direct map, there is a direct
association between a mount point on the client and a directory on the server.
Direct maps have a full path name and indicate the relationship explicitly.
Lines in direct maps have the following syntax:

key [mount-options] location

key

key is the path name of the mount point in a direct map.

mount-options

mount-options are the options you want to apply to this particular mount.
They are required only if they differ from the map default.

location

location is the location of the file system, specified (one or more) as
server:pathname.

Warning – The pathname should not include an automounted mount point, it
should be the actual absolute path to the files system. For instance, the location
of a home directory should be listed as server:/export/home/ username not as
server:/home/ username.

As in the master map, a line beginning with # is a comment. All the text that
follows until the end of the line is ignored. Put a backslash at the end of the
line to split long lines into shorter ones.

Of all the maps, the entries in a direct map most closely resemble, in their
simplest form, the corresponding entries in /etc/vfstab (vfstab contains a
list of all file systems to be mounted). An entry that appears in /etc/vfstab
as:

dancer:/usr/local - /usr/local/tmp nfs - yes ro

Using Autofs 67

5

appears in a direct map as:

 This is a typical /etc/auto_direct map:

There are important but previously unmentioned features in this map. See
”How Autofs Selects the Nearest Read-Only Files for Clients (Multiple
Locations)“ on page 76 and ”Multiple Mounts“ on page 73.

Indirect Maps

An indirect map uses a substitution value of a key to establish the association
between a mount point on the client and a directory on the server. Indirect
maps are useful for accessing specific file systems, like home directories. The
auto_home map is an example of an indirect map.

Lines in indirect maps have the following general syntax:

key [mount-options] location

key

key is a simple name (no slashes) in an indirect map.

mount-options

The mount-options are the options you want to apply to this particular
mount. They are required only if they differ from the map default.

/usr/local/tmp -ro dancer:/usr/local

/usr/local -ro \
 /bin ivy:/export/local/sun4 \
 /share ivy:/export/local/share \
 /src ivy:/export/local/src
/usr/man -ro oak:/usr/man \

rose:/usr/man \
willow:/usr/man

/usr/games -ro peach:/usr/games
/usr/spool/news -ro pine:/usr/spool/news \

willow:/var/spool/news

68 NFS Administration Guide—November 1995

5

location

location is the location of the file system, specified (one or more) as
server:pathname.

Warning – The pathname should not include an automounted mount point, it
should be the actual absolute path to the files system. For instance, the location
of a directory should be listed as server:/usr/local not as
server:/net/ server/usr/local .

As in the master map, a line beginning with # is a comment. All the text that
follows until the end of the line is ignored. Put a backslash (\) at the end of the
line to split long lines into shorter ones.

Table 5-1 showed an auto_master map that contained the entry:

auto_home is the name of the indirect map that contains the entries to be
mounted under /home . A typical auto_home map might contain:

As an example, assume that the previous map is on host oak . If user linda
has an entry in the password database specifying her home directory as
/home/linda , then whenever she logs into computer oak , autofs mounts the
directory /export/home/linda residing on the computer peach . Her home
directory is mounted read-write, nosuid .

Assume the following conditions occur: User linda ’s home directory is listed
in the password database as /home/linda . Anybody, including Linda, has
access to this path from any computer set up with the master map referring to
the map in the previous example.

/home auto_home

david willow:/export/home/david
rob cypress:/export/home/rob
gordon poplar:/export/home/gordon
rajan pine:/export/home/rajan
tammy apple:/export/home/tammy
jim ivy:/export/home/jim
linda -rw,nosuid peach:/export/home/linda

Using Autofs 69

5

Under these conditions, user linda can run login or rlogin on any of these
computers and have her home directory mounted in place for her.

Furthermore, now linda can also type the following command:

autofs mounts David’s home directory for her (if all permissions allow).

Note – There is no concatenation of options between the automounter maps.
Any options added to an automounter map will override all options listed in
maps that are searched earlier. For instance, options included in the
auto_master map would be overwritten by corresponding entries in any
other map.

On a network without a name service, you have to change all the relevant files
(such as /etc/passwd) on all systems on the network to accomplish this.
With NIS, make the changes on the NIS master server and propagate the
relevant databases to the slave servers. On a network running NIS+,
propagating the relevant databases to the slave servers is done automatically
after the changes are made.

How Autofs Navigates Through the Network (Maps)

Autofs searches a series of maps to navigate its way through the network.
Maps are files that contain information such as the password entries of all
users on a network or the names of all host computers on a network; that is,
network-wide equivalents of UNIX administration files. Maps are available
locally or through a network name service like NIS or NIS+. You create maps
to meet the needs of your environment using the Solstice System Management
Tools. See “Modifying How Autofs Navigates the Network (Modifying Maps)”
on page 81.

% cd ~david

70 NFS Administration Guide—November 1995

5

How Autofs Starts the Navigation Process (Master Map)

The automount command reads the master map at system startup. Each entry
in the master map is a direct or indirect map name, its path, and its mount
options, as shown in Figure 5-2. The specific order of the entries is not
important. automount compares entries in the master map with entries in the
mount table to generate a current list.

Figure 5-2 Master Map

For example, Table 5-1 shows what a typical auto_master file would contain:

Autofs recognizes some special mount points and maps, which are explained
in the following sections.

Mount Point /–

In Table 5-1, the mount point /- tells autofs not to associate the entries in
auto_direct with any specific mount point. Indirect maps use mount points.
Direct maps use mount points specified in the named map. (Remember, in a
direct map the key, or mount point, is a full path name.)

Table 5-1 auto_master File Contents

Mount Point Map Mount options

/- auto_direct -ro

/home auto_home -nosuid

/net -hosts -nosuid

mount or unmount

Master map
/etc/auto_master

automount

Mount table
/etc/mnttab

Compare

Autofs
mounts

Using Autofs 71

5

A NIS or NIS+ auto_master file can have only one direct map entry because
the mount point must be a unique value in the name space. An auto_master
file that is a local file can have any number of direct map entries, as long as
they do not overlap.

Mount Point /home

The mount point /home is the directory under which the entries listed in
/etc/auto_home (an indirect map) are to be mounted.

Mount Point /net

Autofs mounts under the directory /net all the entries in the special map
-hosts . This is a built-in map that uses only the hosts database. For
example, if the computer gumbo is in the hosts database and it exports any of
its file systems, the command

changes the current directory to the root directory of the computer gumbo.
Note that autofs can mount only the exported file systems of host gumbo; that is,
those on a server available to network users as opposed to those on a local
disk. Therefore, all the files and directories on gumbo may not be available
through /net/gumbo .

Note – Autofs checks the server’s export list only at mount time. Once a
server’s file systems are mounted, autofs does not check with the server again
until the server’s file systems are unmounted and then remounted. Therefore,
newly exported file systems will not be seen until the file systems on the server
are unmounted or remounted.

The Mount Process

When you issue the command in the previous example, autofs performs the
following steps:

1. ping s the server’s mount service to see if it’s alive.

% cd /net/gumbo

72 NFS Administration Guide—November 1995

5

2. Requests the list of exported file systems from the server.

3. Sorts the exported list according to length of path name:

This sorting ensures that the mounting is done in the required order (that is,
/usr/src is done before /usr/src/sccs).

4. Proceeds down the list, mounting all the file systems at mount points.

Note that autofs has to mount all the file systems that the server in question
exports. Even if the request is as follows.

Autofs mounts all of gumbo’s exported systems, not just /usr .

If autofs is running on NFS servers, any maps that refer to file systems on the
server should be checked for file name paths that pass through an autofs
mount point. This causes an access through the loopback file system (LOFS)
which cannot be exported. The entry would appear as follows.

Replace it with this entry:

In previous releases, the mount daemon on the server would follow the
automounter’s symbolic link at /home/brent and find the exported file
system. With autofs, the mount daemon finds a loopback mount at
/home/brent that is not exportable so the client will not be able to mount it.

/usr/src
/export/home
/usr/src/sccs
/export/root/ client

% ls /net/gumbo/usr/include

brent creole:/home/brent

brent creole:/export/home/creole/brent

Using Autofs 73

5

Note – Check existing maps to make sure that the server:/path portion of the
map entry does not refer to an autofs mount point.

The unmounting that occurs after a certain amount of time is from the bottom
up (reverse order of mounting). If one of the directories at the top is busy,
autofs has to remount the unmounted file systems and try again later.

The -hosts special map provides a convenient way for users to access
directories in many different hosts without having to use rlogin or rsh . They
no longer have to modify /etc/vfstab files or mount the directories
individually as superuser.

With the /net method of access, the server name is in the path and is location-
dependent. If you want to move an exported file system from one server to
another, the path may no longer work. Also, because all exported file systems
need to be mounted, using only one of those file systems is inefficient. Instead,
you should set up an entry in a map specifically for the file system you want
rather than use /net .

Note – Autofs runs on all computers and supports /net and /home
(automounted home directories) by default. These defaults may be overridden
by entries in the NIS auto.master map or NIS+ auto_master table, or by
local editing of the /etc/auto_master file.

Multiple Mounts

A map entry can describe multiple mounts. Multiple mounts enable users to
access file systems from different locations. By having the same applications on
several servers, users have an alternate source for that application if a
particular server is down. Also, autofs can choose the quickest path for users
(clients). Consider the first entry in ”Direct Maps“ on page 66:

/usr/local -ro \
 /bin ivy:/export/local/sun3 \
 /share ivy:/export/local/share\
 /src ivy:/export/local/src

74 NFS Administration Guide—November 1995

5

This is actually one long entry split into four lines using the backslash with the
continuation lines indented with spaces or tabs. This entry mounts
/usr/local/bin , /usr/local/share , and /usr/local/src from the
server ivy , with the read-only option. The entry could also read:

where the options are different and more than one server is used. The previous
example is equivalent to three separate entries, for example:

Multiple mounting guarantees that all three directories are mounted when you
refer to one of them. If the entries are listed as separate mounts, then each of
the directories is mounted only as needed. The first (multiple mount) case is
accomplished with a single autofs mount at /usr/local . The second (single
mounts) case results in three independent autofs mounts.

The mount root is a path relative to a direct autofs mount, or relative to the
directory under an indirect autofs mount. This path describes where each file
system should be mounted beneath an autofs mount point. This mount point
theoretically should be specified by.

But in practice, the mount point is not specified because in the case of a single
mount as in the previous example, the location of the mount point is at the
mount root or “/ .” So instead of the previous example, you would use this
entry:

/usr/local \
 /bin -ro ivy:/export/local/sun3 \
 /share -rw,secure willow:/usr/local/share\
 /src -ro oak:/home/jones/src

/usr/local/bin -ro ivy:/export/local/sun3
/usr/local/share -rw,secure willow:/usr/local/share
/usr/local/src -ro oak:/home/jones/src

parsley / -ro veg:/usr/greens

parsley -ro veg:/usr/greens

Using Autofs 75

5

The mount-point specification is important in a multiple-mount entry. Autofs
must have a mount point for each mount. When the entry specifies that one
mount occur within another, the entry becomes a hierarchical mount, which is
a special case of multiple mounts.

Note – A hierarchical mount can be a problem if the server for the root of the
file system goes down. Because the unmounting has to proceed through the
mount root, which also cannot be unmounted while its server is down, any
attempt to unmount the lower branches fails.

The mount points used here for the file system are / , /bin , /share , and
/src . Note that these mount point paths are relative to the mount root, not the
host’s file system root.

The first entry in the previous example has / as its mount point. It is mounted
at the mount root. The first mount of a file system does not need to be at the
mount root. Autofs issues mkdir commands to build a path to the first mount
point if it is not at the mount root.

In these mount option examples:

all three mounts share the same options. You can change this to:

/usr/local \
 / -rw peach:/export/local \
 /bin -ro ivy:/export/local/sun3 \
 /share -rw willow:/usr/local/share \
 /src -ro oak:/home/jones/src

/usr/local \
 /bin -ro ivy:/export/local/$CPU \
 /share -ro willow:/usr/local/share \
 /src -ro oak:/home/jones/src

/usr/local -ro\
 /bin ivy:/export/local/sun4 \
 /share willow:/usr/local/share \
 /src oak:/home/jones/src

76 NFS Administration Guide—November 1995

5

Administration is easier if there is only one set of mount options common to all
mounts in the entry. If one of the mount points needs a different specification,
you can write:

You may want different mount options for some of the mounts; for example, to
enable clients to update the files on one mount but not on the others.

How Autofs Selects the Nearest Read-Only Files for Clients (Multiple
Locations)

In the example of a direct map, which was:

the mount points /usr/man and /usr/spool/news list more than one
location (three for the first, two for the second). This means users can mount
from any of the replicated locations. This procedure makes sense only when
you mount a file system that is read-only, since you must have some control
over the locations of files you write or modify. You don’t want to modify files
on one server on one occasion and, minutes later, modify the “same” file on
another server. The benefit is that the best available server will be mounted
automatically without any effort required by the user.

/usr/local -ro\
 /bin ivy:/export/local/sun4 \
 /share -rw,secure willow:/usr/local/share \
 /src oak:/home/jones/src

/usr/local -ro \
 /bin ivy:/export/local/sun4\
 /share ivy:/export/local/share\
 /src ivy:/export/local/src
/usr/man -ro oak:/usr/man \

rose:/usr/man \
willow:/usr/man

/usr/games -ro peach:/usr/games
/usr/spool/news -ro pine:/usr/spool/news \

willow:/var/spool/news

Using Autofs 77

5

A good example of this is man pages. In a large network, more than one server
may export the current set of manual pages. Which server you mount them
from does not matter, as long as the server is running and exporting its file
systems. In the previous example, multiple mount locations are expressed as a
list of mount locations in the map entry.

You could also enter this as a comma-separated list of servers, followed by a
colon and the path name (as long as the path name is the same for all the
replicated servers).

Here you can mount the man pages from the servers oak, rose, or willow .
The numbers in parentheses indicate a weighting. Servers without a weighting
have a value of zero (most likely to be selected). The higher the weighting
value, the lower the chance the server will be selected.

Note – Server proximity is more important than weighting. A server on the
same network segment as the client is more likely to be selected than a server
on another network segment, regardless of the weighting factors assigned.

Figure 5-3 Server Proximity

/usr/man -ro oak:/usr/man rose:/usr/man willow:/usr/man

/usr/man -ro oak,rose(1),willow(2):/usr/man

same net

same subnet

different net

78 NFS Administration Guide—November 1995

5

This redundancy is used once at mount time to select one server from which to
mount. Autofs does not check the status of the mounted-from server once the
mount occurs, so this is not useful as a fail-over service. Multiple locations are
very useful in an environment where individual servers may not be exporting
their file systems temporarily.

This feature is particularly useful in a large network with many subnets.
Autofs chooses the nearest server and therefore confines NFS network traffic to
a local network segment. In servers with multiple network interfaces, list the
host name associated with each network interface as if it were a separate
server. Autofs selects the nearest interface to the client.

Variables in a Map Entry

You can create a client-specific variable by prefixing a dollar sign ($) to its
name. This helps you to accommodate different architecture types accessing
the same file system location. You can also use curly braces to delimit the name
of the variable from appended letters or digits. Table 5-2 shows the predefined
map variables.

You can use variables anywhere in an entry line except as a key. For instance, if
you have a file server exporting binaries for SPARC and x86 architectures from
/usr/local/bin/sparc and /usr/local/bin/x86 , respectively, you can
have the clients mount through a map entry like the following:

Table 5-2 Predefined Map Variables

Variable Meaning Derived From Example

ARCH Architecture type uname -m sun4c

CPU Processor Type uname -p sparc

HOST Host name uname -n dinky

OSNAME Operating system name uname -s SunOS

OSREL Operating system release uname -r 5.4

OSVERS Operating system version
(version of the release)

uname -v FCS1.0

/usr/local/bin -ro server:/usr/local/bin/$CPU

Using Autofs 79

5

Now the same entry on all the clients applies for all architectures.

Maps That Refer to Other Maps

A map entry +mapname used in a file map causes automount to read the
specified map as if it were included in the current file. If mapname is not
preceded by a slash, then autofs treats the map name as a string of characters
and uses the name service switch policy to find it. If the path name is an
absolute path name, then automount looks for a local map of that name. If the
map name starts with a dash (-), automount consults the appropriate built-in
map.

This name service switch file contains an entry for autofs, which contains the
order in which the name services are searched. The file below is an example of
a name service switch file:

#
/etc/nsswitch.nis:
#
An example file that could be copied over to /etc/nsswitch.conf;
it uses NIS (YP) in conjunction with files.
#
"hosts:" and "services:" in this file are used only if the /etc/netconfig
file contains "switch.so" as a nametoaddr library for "inet" transports.
the following two lines obviate the "+" entry in /etc/passwd and /etc/group.
passwd: files nis
group: files nis

consult /etc "files" only if nis is down.
hosts: nis [NOTFOUND=return] files
networks: nis [NOTFOUND=return] files
protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
ethers: nis [NOTFOUND=return] files
netmasks: nis [NOTFOUND=return] files
bootparams: nis [NOTFOUND=return] files
publickey: nis [NOTFOUND=return] files
netgroup: nis
automount: files nis
aliases: files nis
for efficient getservbyname() avoid nis
services: files nis

80 NFS Administration Guide—November 1995

5

For example, you can have a few entries in your local /etc/auto_home map
for the most commonly accessed home directories, and use the switch to fall
back to the NIS map for other entries.

Note – If your /etc/auto_home or other local maps have the execute bit set,
then autofs tries to execute it to obtain a map entry, instead of reading it.
autofs logs errors to the console when the map is accessed.

To fix the problem, reset the execute bit:

After consulting the included map, automount continues scanning the current
map if no match is found. This means you can add more entries after a + entry.

The map included can be a local file (remember, only local files can contain +
entries) or a built-in map:

The wildcard means a match is found. Therefore, the wildcard should be the
last entry in all cases, because autofs does not continue consulting the map
after finding a wildcard.

bill cs.csc.edu:/export/home/&
bonny cs.csc.edu:/export/home/&

chmod -x /etc/auto_home

bill cs.csc.edu:/export/home/&
bonny cs.csc.edu:/export/home/&
+auto_home
* -nosuid &:/export/home/&

+auto_home_finance # NIS+ map
+auto_home_sales # NIS+ map
+auto_home_engineering # NIS+ map
+/etc/auto_mystuff # local map
+auto_home # NIS+ map
+-hosts # built-in hosts map

Using Autofs 81

5

Note – + entries cannot be used in NIS+ or NIS maps.

Modifying How Autofs Navigates the Network (Modifying Maps)

You can modify, delete, or add entries to maps to meet the needs of your
environment. As applications and other file systems that users require change
their location, the maps must reflect those changes. You can modify autofs
maps at any time. Whether your modifications take effect the next time
automountd mounts a file system depends on which map you modify and
what kind of modification you make.

Administrative Tasks Involving Maps

Listed below are the different administrative tasks you may need to perform
involving maps in order to change your autofs environment.

• ”How to Modify Indirect Maps“ on page 83
• ”How to Modify Direct Maps“ on page 83
• ”How to Modify the Master Map“ on page 82
• ”Avoiding Mount-Point Conflicts“ on page 84

Table 5-3 describes the types of maps and their uses.

Table 5-3 Types of Maps and Their Uses

Type of Map Use

Master Associates a directory with a map

Direct Directs autofs to specific file systems

Indirect Directs autofs to reference-oriented file systems

82 NFS Administration Guide—November 1995

5

Table 5-4 describes how to make changes to your autofs environment based on
your name service.

Table 5-5 tells you when to run the automount command depending on the
modification you have made to the type of map. For example, if you’ve made
an addition or a deletion to a direct map, you need to run the automount
command to allow the change take effect; however, if you’ve modified an
existing entry, you do not need to run autofs to make the change take effect.

Modifying the Maps

The following procedures assume that you are using NIS+ as your name
service.

▼ How to Modify the Master Map

1. Using the nistbladm command, make the changes you want to the
master map.
See NIS+ and FNS Administration Guide.

2. For each client, become superuser by typing su at a prompt and then your
superuser password.

Table 5-4 Map Maintenance

Name Service Method

Local files text editor

NIS make files

NIS+ nistbladm

Table 5-5 When to Run the automount Command

Type of Map Restart automount ?

Addition or Deletion Modification

auto_home N N

auto_master Y Y

direct Y N

indirect N N

Using Autofs 83

5

3. For each client, run the automount command to ensure the changes you
made take effect.

4. Notify your users of the changes.
Notification is required so that the users can also run the automount
command as superuser on their own computers.

 The automount command consults the master map whenever it is run.

▼ How to Modify Indirect Maps

♦ Using the nistbladm command, make the changes you want to the
indirect map.
See NIS+ and FNS Administration Guide.

The change takes effect the next time the map is used, which is the next time a
mount is done.

▼ How to Modify Direct Maps

1. Using the nistbladm command, add or delete the changes you want to
the direct map.
See NIS+ and FNS Administration Guide.

2. If you added or deleted a mount point entry in Step 1, run the automount
command.

3. Notify your users of the changes.
Notification is required so that the users can also run the automount
command as superuser on their own computers.

Note – If you simply modify or change the contents of an existing direct map
entry, you do not need to run the automount command.

For example, suppose you modify the auto_direct map so that the
/usr/src directory is now mounted from a different server. If /usr/src is
not mounted at this time, the new entry takes effect immediately when you try
to access /usr/src . If /usr/src is mounted now, you can wait until the
auto-unmounting takes place, and then access it. If this is not satisfactory, you

84 NFS Administration Guide—November 1995

5

can unmount with the umount command and then access /usr/src . The
mounting will now be done from the new server. If you deleted the entry, you
would have to run the automount command for the deletion to take effect.

Note – Because of the additional steps, and because they do not take up as
much room in the mount table as direct maps, use indirect maps whenever
possible. They are easier to construct, and less demanding on the computers’
file systems.

Avoiding Mount-Point Conflicts

If you have a local disk partition mounted on /src and you also want to use
autofs to mount other source directories, you may encounter a problem. If you
specify the mount point /src , then autofs hides the local partition whenever
you try to reach it.

You need to mount the partition somewhere else; for example, on
/export/src . You would the need an entry in /etc/vfstab like

and this entry in auto_src

where terra is the name of the computer.

Default Autofs Behavior

Booting invokes autofs using the /etc/init.d/autofs script and looks for
the master auto_master map (subject to the rules discussed below).

Autofs uses the name service specified in the automount entry of the
/etc/nsswitch.conf file. If NIS+ is specified, as opposed to local files or
NIS, all map names are used as is. If NIS is selected and autofs cannot find a

/dev/dsk/d0t3d0s5 /dev/rdsk/c0t3d0s5 /export/src ufs 3 yes -

terra terra:/export/src

Using Autofs 85

5

map that it needs, but finds a map that contains one or more underscores, the
underscores are changed to dots. Then autofs looks up the map again, as
shown in Figure 5-4.

Figure 5-4 How Autofs Uses the Name Service

The screen activity would look like the following example.

$ more /etc/auto_master
Master map for autofs
#
+auto_master
/net -hosts -nosuid
/home auto_home

$ ypmatch brent auto_home
Can’t match key brent in map auto_home. Reason: no such map in
server’s domain.

$ ypmatch brent auto.home
diskus:/export/home/diskus1/&
$

lookup key mapname

not /

/path ?

open (mapname)
read ...

open (/etc/mapname)
read ...

nis_list (key, mapname)

entry or map
not found

files nisplus nis

yp_match (key, mapname)

Replace "_" by "."

entry or map
not found

no map &
has "_"?

yp_match (key, newname)

86 NFS Administration Guide—November 1995

5

If “files” is selected as the name service, all maps are assumed to be local files
in the /etc directory. Autofs interprets a map name that begins with a slash
(/) as local, regardless of which name service it uses.

Autofs Reference
The rest of this chapter describes more advanced autofs features and topics.

Metacharacters

Autofs recognizes some characters as having a special meaning. Some are used
for substitutions, some to protect other characters from the autofs map parser.

Ampersand (&)
If you have a map with many subdirectories specified, as in the following,
consider using string substitutions.

You can use the ampersand character (&) to substitute the key wherever it
appears. If you use the ampersand, the map above changes to:

You could also use key substitutions in a direct map, in situations like this:

john willow:/home/john
mary willow:/home/mary
joe willow:/home/joe
able pine:/export/able
baker peach:/export/baker

john willow:/home/&
mary willow:/home/&
joe willow:/home/&
able pine:/export/&
baker peach:/export/&

/usr/man willow,cedar,poplar:/usr/man

Using Autofs 87

5

which you can also write as:

Notice that the ampersand substitution uses the whole key string, so if the key
in a direct map starts with a / (as it should), the slash is carried over, and you
could not do, for example, the following:

because autofs would interpret it as:

Asterisk (*)
The catchall substitute character, the asterisk (*), can be used to match any key.
The /export file system from all hosts could be mounted through this map
entry.

Each ampersand is substituted by the value of any given key. Autofs interprets
the asterisk as an end-of-file character.

Special Characters

If you have a map entry that contains special characters, you may have to
mount directories whose names confuse the autofs map parser. The autofs
parser is sensitive to names containing colons, commas, spaces, and so on.
These names should be enclosed in double quotations, as in the following:

/usr/man willow,cedar,poplar:&

/progs &1,&2,&3:/export/src/progs

/progs /progs1,/progs2,/progs3:/export/src/progs

* &:/export

/vms -ro vmsserver:"rc0:dk1"
/mac -ro gator:/"Mr Disk"

88 NFS Administration Guide—November 1995

5

Accessing Non-NFS File Systems

Autofs can also mount files other than NFS files. Autofs mounts files on
removable media, such as diskettes or CD-ROM. Normally, you would mount
files on removable media using the Volume Manager. The examples below are
given to show how this mounting could be done through autofs. The Volume
Manager and autofs do not work together, so normally these entries would not
be used without first deactivating the Volume Manager.

Instead of mounting a file system from a server, you put the media in the drive
and reference it from the map. If you want to access non-NFS file systems and
you are using autofs, see the following procedures. For more information about
Volume Manager, see System Administration Guide, Volume I.

▼ How to Access CD-ROM Applications

Note – Use this procedure if you are not using Volume Manager.

♦ Specify the CD-ROM file system type as follows:

The CD-ROM device you wish to mount must appear as a name following a
colon.

▼ How to Access Diskettes Containing Data in PC-DOS Files

Note – Use this procedure if you are not using Volume Manager.

♦ Specify the diskette file system type as follows:

hsfs -fstype=hsfs,ro :/dev/sr0

 pcfs -fstype=pcfs :/dev/diskette

Using Autofs 89

5

Accessing NFS File Systems Using CacheFS

The cache file system (CacheFS) is a generic nonvolatile caching mechanism
that improves the performance of certain file systems by utilizing a small, fast,
local disk.

You can improve the performance of the NFS environment by using CacheFS
to cache data from an NFS file system on a local disk.

▼ How to Start CacheFS

♦ Run the cfsadmin command to create a cache directory on the local disk.

Add this line to the master map to cache home directories:

Note – Options that are included in maps that are searched later will override
options that are set in maps that are searched earlier. The last options that are
found are the ones that are used. In the example above, a specific entry added
to the auto_home map would need to include the options listed in the master
maps.

Common Tasks and Procedures
This section describes some of the most common tasks you may encounter in
your own environment. Recommended procedures are included for each
scenario to help you configure autofs to best meet your clients’ needs.

Note – Use the Solstice System Management Tools or see NIS+ and FNS
Administration Guide to perform the tasks discussed in this section.

cfsadmin -c /var/cache

/home auto_home -fstype=cachefs,cachedir=/var/cache,backfstype=nfs

90 NFS Administration Guide—November 1995

5

How to Set Up Different Architectures to Access a Shared Name Space

You need to assemble a shared name space for local executables, and
applications, such as spreadsheet tools and word-processing packages. The
clients of this name space use several different workstation architectures that
require different executable formats. Also, some workstations are running
different releases of the operating system.

1. Create the auto_local map with the nistbladm command.
See the NIS+ and FNS Administration Guide.

2. Choose a single, site-specific name for the shared name space so that files
and directories that belong to this space are easily identifiable.

 For example, if you choose /usr/local as the name, then the path
/usr/local/bin is obviously a part of this name space.

3. For ease of user community recognition, create an autofs indirect map and
mount it at /usr/local . Set up the following entry in the NIS+ (or NIS)
auto_master map:

Note that the ro mount option implies that clients will not be able to write
to any files or directories.

4. Export the appropriate directory on the server.

5. Include a bin entry in the map.
Your directory structure looks like this:

To satisfy the need to serve clients of different architectures, you need
references to the bin directory to be directed to different directories on the
server, depending on the clients’ architecture type.

/usr/local auto_local -ro

 bin aa:/export/local/bin

Using Autofs 91

5

6. To serve clients of different architectures, change the entry by adding the
autofs CPU variable.

Note – For SPARC clients, make executables available under
/export/local/bin/sparc on the server. For x86 clients, use
/export/local/bin/i386 .

▼ How to Support Incompatible Client Operating System Versions

1. Combine the architecture type with a variable that determines the
operating system type of the client.
The autofs OSREL variable can be combined with the CPU variable to form a
name that determines both CPU type and OS release.

2. Create the following map entry.

For SPARC clients running version 5.1 of the operating system, you need to
export /export/local/bin/sparc5.1 from the server and similarly export
for other releases. Since operating systems attempt to preserve backward
compatibility with executable formats, assume that the OS release is not a
factor and eliminate it from future examples.

So far, you have set up an entry for a single server aa . In a large network, you
want to replicate these shared files across several servers. Each server should
have a close network proximity to the clients it serves so that NFS traffic is
confined to local network segments.

bin aa:/export/local/bin/$CPU

bin aa:/export/local/bin/CPUOSREL

92 NFS Administration Guide—November 1995

5

▼ How to Replicate Shared Files Across Several Servers

♦ Modify the entry to create the list of all replica servers as a comma-
separated list:

Autofs chooses the nearest server. If a server has several network interfaces,
then list each interface. Autofs chooses the nearest interface to the client,
avoiding unnecessary routing of NFS traffic.

Several shared files may not have an architecture dependency. A good example
of this is shell scripts. You can locate these shared files under
/usr/local/share with an independent map entry like this:

To ensure that scripts refer to local executables, use architecture-independent
paths either fully qualified or relative (for example, /usr/local/bin/frotz
or ../bin/frotz).

Similarly, other applications may have their own wrapper scripts for handling
client dependencies. You can also set up these scripts with their own map
entries.

The servers can use the same /usr/local map as the clients. Users who work
on the server will see the same shared name space under /usr/local .

If the server’s autofs notices that a directory under /usr/local is available
on the server under /export/local , it will loopback mount the directory so
that it appears under /usr/local . Servers must not mount local disks on or
under /usr/local .

bin aa,bb,cc,dd:/export/local/bin/$CPU

bin aa,bb-68,bb-72,dd:/export/local/bin/$CPU

share aa,bb-68,bb-72,dd:/export/local/share

frame pp,qq:/export/local/frame/3.0
valid pp,rr,tt:/export/local/valid
lotus pp,qq,zz:/export/local/lotus

Using Autofs 93

5

▼ How to Set Up a Common View of/home Directory Structure

You would like every user in the network to be able to locate their own, or
anyone else’s home directory under /home . This view should be common
across all computers, whether client or server.

Every Solaris installation comes with a pre-installed master map:
/etc/auto_master .

A map for auto_home is also preinstalled under /etc.

Except for a reference to an external auto_home map, this map is empty. If the
directories under /home are to be common to all computers, then do not
modify this /etc/auto_home map. All home directory entries should appear
in the name service files, either NIS or NIS+.

Users should not be permitted to run setuid executables from their home
directories because without a restriction any user could have superuser
privileges on any computer.

▼ How to Apply Security Restrictions

♦ Create the following entry in the name service auto_master file, either
NIS or NIS+:

This entry overrides the entry for /home in the local /etc/auto_master file
(see the previous example) because the +auto_master reference to the
external name service map occurs before the /home entry in the file.

Master map for autofs
#
+auto_master
/net -hosts -nosuid
/home auto_home

Home directory map for autofs
+auto_home

/home auto_home -nosuid

94 NFS Administration Guide—November 1995

5

Note – Do not mount the home directory disk partitions on or under /home
on the server.

▼ How to Set Up Home Directory Servers

1. Mount home directory partitions under /export/home .
This directory is reserved for autofs.

If there are several partitions, mount them under separate directories, for
example, /export/home1 , /export/home2 , and so on.

2. Use the Solstice System Management Tools to create and maintain the
auto_home map.
Whenever you create a new user account, type the location of the user’s
home directory in the auto_home map. Map entries can be simple, for
example:

Note the use of the & (ampersand) to substitute the map key. This is an
abbreviation for the second occurrence of rusty in the following example.

With the auto_home map in place, users can refer to any home directory
(including their own) with the path /home/ user where user is their login name.
This common view of all home directories is valuable when logging into
another user’s computer. Autofs there mounts your home directory for you.
Similarly if you run a remote windowing system client on another computer,
the client program has the same view of the /home directory as you do on the
computer providing the windowing system display.

rusty dragon:/export/home1/&
gwenda dragon:/export/home1/&
charles sundog:/export/home2/&
rich dragon:/export/home3/&

rusty dragon:/export/home1/rusty

Using Autofs 95

5

This common view also extends to the server. Using the previous example, if
rusty logs into the server dragon , autofs there provides direct access to the
local disk by loopback mounting /export/home1/rusty onto
/home/rusty .

Users do not need to be aware of the real location of their home directories. If
rusty needs more disk space and needs to have his home directory relocated
to another server, only rusty ’s entry in the auto_home map needs to be
changed to reflect the new location. Everyone else can continue to use the
/home/rusty path.

▼ How to Consolidate Project-Related Files Under/ws

You are the administrator of a large software development project. You want to
make all project-related files available under a directory called /ws . This
directory is to be common across all workstations at the site.

1. Add an entry for the /ws directory to the site auto_master map, either
NIS or NIS+.

The contents of the /ws directory are determined by the auto_ws map.

2. Add the -nosuid option as a precaution.
This option prevents users from running setuid programs that may exist in
any workspaces.

The auto_ws map is organized so that each entry describes a subproject. Your
first attempt yields a map that looks like the following:

/ws auto_ws -nosuid

compiler alpha:/export/ws/&
windows alpha:/export/ws/&
files bravo:/export/ws/&
drivers alpha:/export/ws/&
man bravo:/export/ws/&
tools delta:/export/ws/&

96 NFS Administration Guide—November 1995

5

The ampersand (&) at the end of each entry is just an abbreviation for the entry
key. For instance, the first entry is equivalent to:

This first attempt provides a map that looks simple, but it turns out to be
inadequate. The project organizer decides that the documentation in the man
entry should be provided as a subdirectory under each subproject. Also, each
subproject requires subdirectories to describe several versions of the software.
Each of these subdirectories must be assigned to an entire disk partition on the
server.

Modify the entries in the map as follows:

Although the map now appears to be much bigger, it still contains only the five
entries. Each entry is larger because it contains multiple mounts. For instance,
a reference to /ws/compiler requires three mounts for the vers1.0,
vers2.0, and man directories. The backslash at the end of each line tells
autofs that the entry is continued onto the next line. In effect, the entry is one
long line, though line breaks and some indenting have been used to make it
more readable. The tools directory contains software development tools for
all subprojects, so it is not subject to the same subdirectory structure. The
tools directory continues to be a single mount.

compiler alpha:/export/ws/compiler

compiler \
/vers1.0 alpha:/export/ws/&/vers1.0 \
/vers2.0 bravo:/export/ws/&/vers2.0 \
/man bravo:/export/ws/&/man

windows \
/vers1.0 alpha:/export/ws/&/vers1.0 \
/man bravo:/export/ws/&/man

files \
/vers1.0 alpha:/export/ws/&/vers1.0 \
/vers2.0 bravo:/export/ws/&/vers2.0 \
/vers3.0 bravo:/export/ws/&/vers3.0 \
/man bravo:/export/ws/&/man

drivers \
/vers1.0 alpha:/export/ws/&/vers1.0 \
/man bravo:/export/ws/&/man

tools \
/ delta:/export/ws/&

Using Autofs 97

5

This arrangement provides the administrator with much flexibility. Software
projects are notorious for consuming large amounts of disk space. Through the
life of the project you may be required to relocate and expand various disk
partitions. As long as these changes are reflected in the auto_ws map, the
users do not need to be notified since the directory hierarchy under /ws is not
changed.

Since the servers alpha and bravo view the same autofs map, any users who
log into these computers will find the /ws name space as expected. These users
will be provided with direct access to local files through loopback mounts
instead of NFS mounts.

Troubleshooting Autofs
Occasionally, you may encounter problems with autofs. This section should
make the problem-solving process easier. It is divided into two subsections.

This section presents a list of the error messages autofs generates. The list is
divided in two parts:

• Error messages generated by the verbose (–v) option of automount
• Error messages that may appear at any time

Each error message is followed by a description and probable cause of the
message.

When troubleshooting, start the autofs programs with the verbose (-v) option,
otherwise you may experience problems without knowing why.

The following paragraphs are labeled with the error message you are likely to
see if autofs fails, and a description of what the problem may be.

Error Messages Generated by automount -v

bad key key in direct map mapname

While scanning a direct map, autofs has found an entry key without a
prefixed /. Keys in direct maps must be full path names.

bad key key in indirect map mapname

While scanning an indirect map autofs has found an entry key containing a
/ . Indirect map keys must be simple names—not path names.

98 NFS Administration Guide—November 1995

5

can't mount server: pathname: reason

The mount daemon on the server refuses to provide a file handle for
server:pathname. Check the export table on server.

couldn't create mount point mountpoint: reason
Autofs was unable to create a mount point required for a mount. This most
frequently occurs when attempting to hierarchically mount all of a server’s
exported file systems. A required mount point may exist only in a file
system that cannot be mounted (it may not be exported) and it cannot be
created because the exported parent file system is exported read-only.

leading space in map entry entry text in mapname
Autofs has discovered an entry in an automount map that contains leading
spaces. This is usually an indication of an improperly continued map entry,
for example:

In this example, the warning is generated when autofs encounters the
second line because the first line should be terminated with a backslash (\).

mapname: Not found

The required map cannot be located. This message is produced only when
the -v option is used. Check the spelling and path name of the map name.

remount server: pathname on mountpoint: server not responding

Autofs has failed to remount a file system it previously unmounted.

WARNING: mountpoint already mounted on

Autofs is attempting to mount over an existing mount point. This means
there is an internal error in autofs (an anomaly).

Miscellaneous Error Messages

dir mountpoint must start with '/'

Automounter mount point must be given as full path name. Check the
spelling and path name of the mount point.

fake
/blat frobz:/usr/frotz

Using Autofs 99

5

hierarchical mountpoints: pathname1 and pathname2

Autofs does not allow its mount points to have a hierarchical relationship.
An autofs mount point must not be contained within another automounted
file system.

host server not responding

Autofs attempted to contact but received no response.

hostname: exports: rpc_err

Error getting export list from hostname. This indicates a server or network
problem.

map mapname, key key: bad

The map entry is malformed, and autofs cannot interpret it. Recheck the
entry; perhaps there are characters in it that need escaping.

mapname: nis_err

Error in looking up an entry in an NIS map. This may indicate NIS
problems.

mount of server: pathname on mountpoint:reason

Autofs failed to do a mount. This may indicate a server or network problem.

mountpoint: Not a directory

Autofs cannot mount itself on mountpoint because it’s not a directory. Check
the spelling and path name of the mount point.

nfscast: cannot send packet: reason

Autofs cannot send a query packet to a server in a list of replicated file
system locations.

nfscast: cannot receive reply: reason

Autofs cannot receive replies from any of the servers in a list of replicated
file system locations.

100 NFS Administration Guide—November 1995

5

nfscast:select: reason

All these error messages indicate problems attempting to ping servers for a
replicated file system. This may indicate a network problem.

pathconf: no info for server: pathname

Autofs failed to get pathconf information for pathname (see the
fpathconf(2) man page).

pathconf: server: server not responding

Autofs is unable to contact the mount daemon on server that provides the
information to pathconf() .

Other Errors with Autofs

If the /etc/auto* files have the execute bit set, then the automounter will try to
execute the maps, which will create messages like:

/etc/auto_home: +auto_home: not found

In this case, the auto_home file has incorrect permissions. Each entry in the file
will generate an error message much like this one. The permissions to the file
should be reset by typing the following command:

chmod 644 /etc/auto_home

101

NFS Tunables A

Several parameters can be set which can improve the functioning of the NFS
service. These parameters can be defined in /etc/system , which is read
during the boot process. Each parameter can be identified by the name of the
kernel module that it is in and a symbol name which identifies it.

Warning – The names of the symbols, the modules that they are resident in,
and the default values can change between releases. Check the documentation
for the version of SunOS that you are running, before making changes or
applying values from previous releases.

Table A-1 on page 102 lists the parameters that are part of the nfs module.
Table A-2 on page 104 lists the parameters that are part of the nfssrv module.
“How to Set the Value of a Kernel Parameter” on page 105 shows how to
change these parameters. See the system(4) man page for information about
the /etc/system file.

102 NFS Administration Guide—November 1995

A

.

Table A-1 NFS Parameters for the nfs Module

Symbol Name Description Default Setting

authdes_win This symbol controls how much clock
skew will be allowed between the server
and clients when using AUTH_DES.

Defaults to 300 seconds

authkerb_win This symbol controls how much clock
skew will be allowed between the server
and clients when using AUTH_KERB.

Defaults to 300 seconds

nfs_acl_cache This symbol controls whether ACLs are
cached on clients which are using the
NFS_ACL protocol.

Defaults to off (0). This can probably be
safely enabled (1) and probably will be in
the next release of Solaris.

nfs_do_symlink_cache This symbol controls whether symbolic
links are cached for file systems mounted
using NFS Version 2.

Defaults to on (1). This may be disabled
(0) if something like amd is to be used on
the system. Client system performance
may be reduced if this is disabled.

nfs3_do_symlink_cache This symbol controls whether symbolic
links are cached for file systems mounted
using NFS Version 3.

Defaults to on (1). This may be disabled
(0) but client system performance may be
reduced.

nfs_dynamic This symbol controls whether dynamic
retransmission support is used for file
systems mounted using NFS Version 2.

Defaults to on (1). It can be turned off (0)
safely, with possible interoperability
problems with servers which are slow or
can not support full 8k read or write
transfers.

nfs3_dynamic This symbol controls whether dynamic
retransmission support is used for file
systems mounted using NFS Version 3.

Defaults to off (0). Do not change this.

nfs_lookup_neg_cache This symbol controls whether failed
lookup requests are cached for file
systems mounted using NFS Version 2.

Defaults to off (0). This can probably be
safely enabled (1) but may negatively
impact normal directory name caching.

nfs3_lookup_neg_cache This symbol controls whether failed
lookup requests are cached for file
systems mounted using NFS Version 3.

Defaults to off (0). This can probably be
safely enabled (1) but may negatively
impact normal directory name caching.

NFS Tunables 103

A

nfs_max_threads This symbol controls the maximum
number of async threads started per file
system mounted using NFS Version 2.

Defaults to 8. Since this number effects
the number of threads per file system, on
a clients with many file systems a large
change could severely degrade
performance.

nfs3_max_threads This symbol controls the maximum
number of async threads started per file
system mounted using NFS Version 3.

Defaults to 8. Since this number effects
the number of threads per file system, on
a client with many file systems a large
change could several degrade
performance

nfs3_max_transfer_size This symbol controls the NFS Version 3
client file blocksize.

Defaults to 32k bytes. Strongly
recommend that it not be changed.

nfs_nra This symbol controls the number of
readahead blocks that are read for file
systems mounted using NFS Version 2.

Defaults to 1. 4 is actually a much better
value, but does result in increased
memory utilization on the client.

nfs3_nra This symbol controls the number of
readahead blocks that are read for file
systems mounted using NFS Version 3.

Defaults to 1. 2 is actually a much better
value, but does result in increased
memory utilization on the client.

nrnode This symbol controls the number of NFS
rnodes that are cached.

The value assigned to this symbol is
configured at boot time and scales to
match the server. This can be set to 1 to
disable caching.

Table A-1 NFS Parameters for the nfs Module

Symbol Name Description Default Setting

104 NFS Administration Guide—November 1995

A

nfs_shrinkreaddir This symbol controls whether over the
wire NFS Version 2 READDIR requests
are shrunk to 1024 bytes. Certain very old
NFS Version 2 servers could not correctly
handle READDIR requests larger than
1024 bytes.

Defaults to off (0), which means to not
reduce the READDIR requests. This can
be safely enabled (1) but may negatively
impact performance while reading
directories.

nfs_write_error_interval This symbol controls how often NFS
ENOSPC write error messages are
logged. Its units are in seconds.

Defaults to 5.

nfs_write_error_to_cons_only This symbol controls whether NFS write
error messages are logged to the system
console or to the system console and
syslog.

Defaults to off (0), which means to log all
NFS write error messages to the system
console and syslog. Enabling (1) this
functionality means that most NFS write
error messages will only printed on the
system console.

Table A-2 NFS Parameters for the nfssrv Module

Symbol Name Description Default Setting

nfs_portmon This symbol controls whether the NFS
server will do filtering of requests based
on the IP port number. It uses the
Berkeley notion of reserved port
numbers.

Defaults to off (0). It can be enabled (1),
but problems with interoperability may
appear.

nfsreadmap This symbol is no longer active. Map
reads are no longer implemented. It is
left to ease transitions.

Defaults to off (0).

rfs_write_async This symbol controls whether the NFS
Version 2 server will use write clustering
in order to safely increase write
throughput.

Defaults to on (1). It can be disabled (0),
but performance may be reduced.

Table A-1 NFS Parameters for the nfs Module

Symbol Name Description Default Setting

NFS Tunables 105

A

▼ How to Set the Value of a Kernel Parameter

1. Become root.

2. Edit the /etc/system file and add a line to set the parameter.
Each entry should follow this form:

set module:symbol=value

where module is the name of the kernel module which contains the required
parameter, symbol is the name of the parameter, and value is the numerical
value to assign to the parameter. For example:

set nfs:nfs_nra=4

would change the number of readahead blocks that are read for file systems
mounted using NFS Version 2.

3. Reboot the system.

106 NFS Administration Guide—November 1995

A

107

Index

Symbols
#

comments in direct maps, 66
comments in indirect maps, 68
comments in master map (auto_

master), 65
& in maps, 86
* in maps, 87
+ in map names, 79 to 81
- in map names, 79
/

/- as master map mount point, 66,
70

master map names preceded by, 65
root directory, mounting by diskless

clients, 8
\ in maps, 65, 66, 68

A
-a option

mount command, 18
nfsd daemon, 14
showmount command, 27
umount command, 20, 21

Access Control List (ACL), 6
administration

administrator responsibilities, 11 to
12

NFS files and their functions, 12 to 13
administrator responsibilities, 11 to 12
already mounted message, 98
ampersand (&) in maps, 86
anon option of share command, 24
applications, hung, 59
ARCH map variable, 78
asterisk (*) in maps, 87
AUTH_DES client-server session, 42 to 46

additional transaction, 45
client authenticates server, 45
contacting the server, 43 to 44
decrypting the conversation key, 44
generating public and secret keys, 42
generating the conversation key, 43
running keylogin , 43
Secure RPC issues, 45 to 46
storing information on the server, 44

to 45
verifier returned to client, 45

authentication
See also AUTH_DES client-server

session; security
DES, 41 to 42
KERB, 42
RPC, 41

108 NFS Administration Guide—November 1995

UNIX, 39, 41
auto_direct map, See direct maps
auto_home map

/home directory server setup, 94 to
95

/home directory structure, 93
/home mount point, 70, 71

auto_master map, See master map
(auto_master)

autofs, 61 to 100
See also automount command;

automountd daemon; maps
(autofs)

consolidating project-related files, 95
to 97

default behavior, 84 to 86
features, 9
home directory server setup, 94 to 95
/home directory structure, 93
maps

administrative tasks, 81 to 86
default behavior, 84 to 86
direct, 66 to 67
indirect, 67 to 69
master, 65 to 66
modifying, 81
multiple mounts, 73 to 76
network navigation, 69
read-only file selection, 76 to 78
referring to other maps, 79 to 81
starting the navigation

process, 70 to 73
variables, 78 to 79

metacharacters, 86 to 87
mount process, 71 to 73
mounting file systems, 38
name service use, 84 to 85
name space data, 9
non-NFS file system access, 88
operating systems, supporting

incompatible versions, 91
overview, 8, 61 to 64
reference, 86 to 89
replicating shared files across several

servers, 92

shared name space access, 90 to 91
special characters, 87
tasks and procedures, 89 to 97
troubleshooting, 97 to 100

autofs script, 62, 63
automatic file sharing, 35 to 36
automatic mounting, See autofs;

automount command;
automountd daemon

automount command
autofs and, 8
automountd daemon and, 62
error messages, 97 to 100
how it works, 62
-v option, 97 to 98
when to run, 82

automountd daemon
autofs and, 8
automount command and, 62
how it works, 61, 62

automounter, See autofs

B
background mounting option, 16
backslash (\) in maps, 65, 66, 68
bad key messages, 97
bg option of mount command with -o

flag, 16
booting

diskless client security, 46
mounting file systems, 36 to 37

buffers
Ethernet cards and, 17
size selection during mounting, 17

C
-c option of nfsd daemon, 14
cache and NFS Version 3, 6
cache file system type

autofs access using, 89
mount command option, 15

CacheFS, 89

Index 109

cachefs file system type, 15
can't mount message, 98
cannot receive reply message, 99
cannot send packet message, 99
CD-ROM applications, accessing, 88
cfsadmin command, 89
chkey command, 42, 48
clients

AUTH_DES client-server session, 42
to 46

incompatible operating system
support, 91

NFS services, 7
commands

See also specific commands
hung programs, 59
NFS commands, 14 to 28
UNIX “r” commands, 4

comments
in direct maps, 66
in indirect maps, 68
in master map (auto-master), 65

common key
calculation, 44
described, 42

computers
netnames, 47
reinstalling, moving, or

upgrading, 49
“connectionless” protocols, 4
consolidating project-related files, 95 to 97
conversation key

decrypting, 44
described, 42
generating, 43

couldn't create mount point
message, 98

CPU map variable, 78
cred table

information stored by server, 44 to 45
public keys in, 41

credentials
described, 40, 43 to 44

UNIX authentication, 41

D
-d option of showmount command, 27
daemons

automountd
autofs and, 8
automount command and, 62
how it works, 61, 62

kerbd , 42
keyserv , 48
lockd

described, 13
mountd

checking response on server, 54
described, 13
enabling without rebooting, 57
not registered with rpcbind , 59
remote mounting

requirement, 51 to 52
server mount daemon with

autofs, 72
verifying if running, 57, 59

nfsd
checking response on server, 54
described, 14
enabling without rebooting, 57
remote mounting

requirement, 51 to 52
syntax, 14
verifying if running, 56

required for remote mounting, 51 to
52

rpcbind
dead or hung, 58
mountd daemon not

registered, 59
statd

described, 14
dash (-) in map names, 79
Data Encryption Standard authentication,

See DES authentication
decrypting

See also public-key cryptography

110 NFS Administration Guide—November 1995

conversation key, 44
secret key, 43

defaults
file system type for mount

command, 15
file system types, 12

DES authentication
See also public-key cryptography
AUTH_DES client-server session, 42

to 46
dfstab file option, 49
KERB authentication, 42, 49
netnames, 47
overview, 41 to 42
password protection, 40
user authentication, 39

dfstab file
automatic file sharing, 35 to ??
kerberos option, 49
secure option, 49
syntax, 36

Diffie-Hellman public-key cryptography,
See public-key cryptography

dir must start with '/' message, 98
direct maps

comments in, 66
described, 81
example, 67
modifying, 83
overview, 66 to 67
syntax, 66
when to run automount

command, 82
directory does not exist, 59
diskless clients

manual mounting requirements, 8
NFS services, 7
security during boot process, 46

displaying, See listing
domain name for Secure NFS, 47
domain, defined, 47
DOS files, accessing, 88

E
-e option of showmount command, 27
environment, See NFS environment
error messages

See also troubleshooting
generated by automount -v , 97 to

98
miscellaneous automount

messages, 98 to 100
No such file or directory , 59
Permission denied , 59
server not responding

hung programs, 59
keyboard interrupt for, 52
remote mounting problems, 58

to 59
server not responding

remote mounting problems, 59
server not responding during

mounting, 17
errors

See also troubleshooting
open errors, 6
write errors, 6

/etc/.rootkey file, 49
/etc/auto_direct map, See direct

maps
/etc/auto_master map, See master

map (auto_master)
/etc/default/fs file, 12, 13
/etc/dfs/dfstab file

automatic file sharing, 35 to ??
kerberos option, 49
secure option, 49
syntax, 36

/etc/dfs/fstypes file, 12
/etc/dfs/sharetab file

described, 12
mountd daemon and, 13

/etc/init.d/autofs script, 62, 63
/etc/mnttab file

comparing with auto_master
map, 62

Index 111

creating, 28
described, 12
mounting file systems without

creating entry, 16
/etc/mtab file, See /etc/mnttab file
/etc/netconfig file, 17
/etc/rmtab file, 12
/etc/vfstab file

automount command and, 62
described, 12
mounting by diskless clients, 8
mounting file systems at boot

time, 36 to 37
NFS servers and, 37
printing mounted files in format

for, 18
Ethernet (network) layer, 3
Ethernet card buffer size, 17
exports message, 99

F
-F option

mount command, 15, 18
mountall command, 21
share command, 22
shareall command, 26
umountall command, 21
unshare command, 26
unshareall command, 27

fg option of mount command with -o
flag, 16

file attributes and NFS Version 3, 6
file permissions

See also security
NFS Version 3 improvement, 6
your computer not on list, 59

file sharing, 22 to 27
See also share command
automatic, 35 to 36
examples, 25, 27
giving root access, 24
listed clients only, 23
multiple file systems, 26

NFS Version 3 improvements, 6, 7
options, 23
overview, 22
read-only access, 23, 25
read-write access, 23, 25
replicating shared files across several

servers, 92
security issues, 23, 24, 39 to 40
unauthenticated users and, 24
unsharing, 26, 27

files and file systems
See also autofs; file sharing; mounting;

unmounting
autofs access

NFS file systems using
CacheFS, 89

non-NFS file systems, 88
autofs selection of files, 76 to 78
consolidating project-related files, 95

to 97
file system types

default, 12
mount command options, 15

file systems defined, 8
local file systems

default types, 12
mounting from file system

table, 21
restricting mounting to, 18
unmounting groups, 21 to 22

NFS ASCII files and their
functions, 12 to 13

NFS treatment of, 8
remote file systems

default types, 12
list of remotely mounted file

systems, 12
listing clients with remotely

mounted file systems, 27
mounting from file system

table, 21
unmounting groups, 21 to 22

sharing automatically, 35 to 36
foreground file mounting option, 16
fs file, 12, 13

112 NFS Administration Guide—November 1995

FSType options of mount command, 15
fstypes file, 12
fuser -k mount point, 21, 22

G
-g option

lockd daemon, 13

H
-h option of umountall command, 22
hard option of mount command with -o

flag, 17
hierarchical mountpoints

message, 99
hierarchical mounts (multiple

mounts), 73 to 76
High Sierra file system type, 15
/home directory

server setup, 94 to 95
structure, 93

/home mount point, 70, 71
HOST map variable, 78
host not responding message, 99
-hosts special map, 73
hosts, unmounting all file systems

from, 22
hsfs file system type, 15
hung programs, 59

I
indirect maps

comments in, 68
described, 81
example, 68 to 69
modifying, 83
overview, 67 to 69
syntax, 67 to 68
when to run automount

command, 82
Internet services, protocols, 4
intr option

default, 52
mount command with -o flag, 16

K
-k option of umountall command, 21
KERB authentication

See also DES authentication; public-
key cryptography

dfstab file option, 49
overview, 42

kerbd daemon, 42
kerberos

dfstab file option, 49
mount option, 49

Kerberos (KERB) authentication, 42, 49
kernel, checking response on server, 53
/kernel/fs file, checking, 13
keyboard interruption of mounting, 16, 52
keylogin program

remote login security issues, 46
running, 43, 48

keylogout program, 46
keyserv daemon, verifying, 48
keyserver, starting, 48
ksh command, 7

L
-l option

mountall command, 21
umountall command, 22

layers, See protocol layers
leading space in map entry

message, 98
listing

clients with remotely mounted file
systems, 27

mounted file systems, 18, 19
remotely mounted file systems, 12
shared file systems, 25

local cache and NFS Version 3, 6
local file systems

default types, 12

Index 113

mounting from file system table, 21
restricting mounting to, 18
unmounting groups, 21 to 22

lockd daemon
described, 13
syntax, 13

locking, NFS Version 3 improvements, 7
login command, remote login, 46

M
-m option of mount command, 16
mail command, 7
map key bad message, 99
maps (autofs)

See also direct maps; indirect maps;
master map (auto_
master); mount points

administrative tasks, 81 to 86
automount command, when to

run, 82
avoiding mount conflicts, 84
comments in, 65, 66, 68
default autofs behavior, 84 to 86
direct, 66 to 67
-hosts special map, 73
indirect, 67 to 69
maintenance methods, 82
master, 65 to 66
modifying, 81

direct maps, 83
indirect maps, 83
maintenance method, 82
master map, 82

multiple mounts, 73 to 76
network navigation, 69
referring to other maps, 79 to 81
selecting read-only files for clients, 76

to 78
special characters, 87
splitting long lines in, 65, 66, 68
starting the navigation process, 70 to

73
mount points, 70 to 71
mount process, 71 to 73

types and their uses, 81
variables, 78 to 79

master map (auto_master)
/- mount point, 66, 70
comments in, 65
comparing with /etc/mnttab

file, 62
contents, 70 to 71
described, 81
modifying, 82
overriding options, 89
overview, 65 to 66
preinstalled, 93
Secure NFS setup, 49
security restrictions, 93
syntax, 65
when to run automount

command, 82
messages, See error messages
MIT Project Athena, 42
mnttab file

comparing with auto_master
map, 62

creating, 28
described, 12
mounting file systems without

creating entry, 16
mount command, 15 to 19

See also mounting
autofs and, 8
described, 15 to 16
diskless clients need for, 8
options

FSType, 15
generic, 16
NFS file systems, 16
no arguments, 19
not requiring file system type, 18

to 19
superuser usage, 37
syntax, 15
using, 19

mount of server:pathname on
mountpoint:reason message, 99

mount points

114 NFS Administration Guide—November 1995

/- as master map mount point, 66, 70
avoiding conflicts, 84
fuser -k , 21
/home , 70, 71
multiple-mount entries, 74 to 76
/net , 71, 73
parallel mounting, 18

mount root, 74 to 75
mountall command, 21
mountd daemon

checking response on server, 54
described, 13
enabling without rebooting, 57
not registered with rpcbind , 59
remote mounting requirement, 51 to

52
server mount daemon with autofs, 72
verifying if running, 57, 59

mounting
See also mount command
all file systems in a table, 21
autofs and, 8 to 9, 38
automatic, See autofs; automount

command; automountd
daemon

background retries, 16
boot time method, 36 to 37
diskless client requirements, 8
/etc/mnttab entry creation

during, 16
examples, 19, 21
foreground retries, 16
keyboard interruption during, 16, 52
list of mounted file systems, 12, 18
local file systems only, 18
manually (on the fly), 37
mount points in parallel, 18
options

file system type, 15
generic, 16
multiple mounts, 73 to 76
NFS file systems, 16
not requiring file system type, 18

to 19

overlaying already mounted file
system, 16, 19

quota execution during, 17
read buffer size for, 17
read-only specification, 16, 17, 19
read-write specification, 17
remote mounting

daemons required, 51 to 52
troubleshooting, ?? to 59

server not responding, 17
setuid execution during, 18
soft vs. hard, 52
transport protocol for, 17
verifying configurations and

command lines, 19
version of NFS protocol for, 18
write buffer size for, 17

moving computers, 49
MS-DOS files, accessing, 88
mtab file, See mnttab file
multiple mounts, 73 to 76

N
name services

autofs use of, 84 to 85
map maintenance methods, 82

name spaces
autofs and, 9
shared, accessing, 90 to 91

navigating using maps
multiple mounts, 73 to 76
overview, 69
starting the process, 70 to 73

mount points, 70 to 71
mount process, 71 to 73

/net mount point
access method, 73
described, 71

netconfig file, 17
netnames, 47
network layer, 3
network lock manager, 7
networking software

Index 115

application layer, 4
OSI Reference Model, 2 to 3
overview, 1
protocol layers, 1 to 2
transport layer, 4

newkey command, 42, 48
NFS commands, See commands
NFS environment, 5 to 6

benefits, 5
file systems, 8
overview, 5
Secure NFS, 39 to 40
servers and clients, 7
Version 2 software, 5 to 6
Version 3 software, 6

nfs file system type, described, 15
NFS troubleshooting, 51 to 59

determining where NFS service has
failed, 57

hung programs, 59
remote mounting problems, 59
server problems, 53
strategies, 51 to 52

nfscast: cannot receive reply
message, 99

nfscast: cannot send packet
message, 99

nfscast:select message, 100
nfsd daemon

checking response on server, 54
described, 14
enabling without rebooting, 57
remote mounting requirement, 51 to

52
syntax, 14
verifying if running, 56

nis_err message, 99
nisaddcred command, 42, 48
nistbladm command, 82 to 84
no info message, 98, 100
No such file or directory

message, 59

nointr option of mount command with -
o flag, 16

noquota option of mount command with
-o flag, 17

nosuid option
mount command with -o flag, 18
share command, 24

Not a directory message, 99
Not found message, 98
number sign (#)

comments in direct maps, 66
comments in indirect maps, 68
comments in master map (auto_

master), 65

O
-O option of mount command, 16, 19
-o option

mount command, 16, 19
share command, 23, 25
umount command, 20
unshare command, 26

open errors, 6
Open Systems Interconnection Reference

Model, See OSI Reference Model
operating systems

map variables, 78
supporting incompatible versions, 91

OSI Reference Model
application layer, 4
overview, 2 to 3
table of protocol layers, 3
transport layer, 4

OSNAME map variable, 78
OSREL map variable, 78
OSVERS map variable, 78
overlaying already mounted file

system, 16, 19

P
-p option

mount command, 18

116 NFS Administration Guide—November 1995

nfsd daemon, 14
parallel mounting, 18
passwords

autofs and superuser passwords, 8
DES password protection, 40
secret-key decryption, 43
Secure RPC password creation, 48

pathconf: no info message, 100
pathconf: server not responding

message, 100
PC file system type, 15
PC-DOS files, accessing, 88
pcfs file system type, 15
peer process, 2
Permission denied message, 59
permissions

See also security
NFS Version 3 improvement, 6
your computer not on list, 59

plus sign (+) in map names, 79 to 81
pound sign (#)

comments in direct maps, 66
comments in indirect maps, 68
comments in master map (auto_

master), 65
printing

list of mounted file systems, 18
list of remotely mounted

directories, 27
list of shared or exported files, 27

processor type map variable, 78
programs, hung, 59
projects, consolidating files, 95 to 97
proto= option of mount command with -

o flag, 17
protocol layers, 1 to 2

application layer, 4
OSI Reference Model, 2 to 3
transport layer, 4

protocol stack, See protocol layers
public-key cryptography

See also DES authentication

AUTH_DES client-server session, 42
to 46

changing public and secret keys, 42
common key

calculation, 44
described, 42

conversation key, 42
database of public keys, 40, 41, 42
DES authentication, 41 to 42
generating keys

conversation key, 43
public and secret keys, 42

secret key
changing, 42
database, 41, 42
decrypting, 43
deleting from remote server, 46
generating, 42

time synchronization, 41
publickey map, 41, 48

Q
quota option of mount command with -o

flag, 17
quota(1M) command, 17

R
-r option

mount command, 16, 19
mountall command, 21
umountall command, 22

read buffer size selection, 17
read-only type

file selection by autofs, 76 to 78
mounting file systems as, 16, 17, 19
sharing file systems as, 23, 25

read-write type
mounting file systems as, 17
sharing file systems as, 23, 25

reinstalling computers, 49
remote file systems

default types, 12

Index 117

list of remotely mounted file
systems, 12

listing clients with remotely mounted
file systems, 27

mounting from file system table, 21
unmounting groups, 21 to 22

remote login and security, 45
remote mounting

daemons required, 51 to 52
troubleshooting, 53 to 57

remote procedure call, See RPC
remount message, 98
replayed transactions, 45
replicating shared files across several

servers, 92
resources, shared, 12
rlogin command, remote login, 46
rmtab file, 12
ro option

mount command with -o flag, 17, 19
share command with -o flag, 23, 25

root directory, mounting by diskless
clients, 8

root, mount, 74 to 75
root=host option of share

command, 24
RPC

authentication, 41
Secure

DES authorization issues, 45 to
46

overview, 40 to 41
rpcbind daemon

dead or hung, 58
mountd daemon not registered, 59

rsize= option of mount command with -
o flag, 17

rw option
mount command with -o flag, 17
share command with -o flag, 23, 25

rw=client option of share command
with -o flag, 23

S
-s option of umountall command, 21
s5fs file system type, 15
secret key

changing, 42
database, 41, 42
decrypting, 43
deleting from remote server, 46
generating, 42
server crash and, 45 to 46

secure
dfstab file option, 49
mount option, 49

Secure NFS
administering, 47 to 49
domain name, 47
overview, 39 to 40
setting up, 47 to 49

Secure RPC
DES authorization issues, 45 to 46
overview, 40 to 41

security, 39 to 49
applying restrictions, 93
DES authentication

AUTH_DES client-server
session, 42 to 46

dfstab file option, 49
netnames, 47
overview, 41 to 42
password protection, 40
user authentication, 39

file-sharing issues, 23, 24
KERB authentication, 42, 49
NFS Version 3 and, 6
Secure NFS

administering, 47 to 49
overview, 39 to 40

Secure RPC
DES authorization issues, 45 to

46
overview, 40 to 41

setuid execution during file
mounting, 18

UNIX authentication, 39, 41

118 NFS Administration Guide—November 1995

serial unmounting
specifying, 21

server not responding message
hung programs, 59
keyboard interrupt for, 52
remote mounting problems, 58

, 98, 100
servers

AUTH_DES client-server session, 42
to 46

autofs selection of files, 76 to 78
crashes and secret keys, 45 to 46
daemons required for remote

mounting, 51 to 52
file systems mounted by autofs, 72
home directory server setup, 94 to 95
maintaining, 12
NFS server down, 59
NFS servers and vfstab file, 37
NFS services, 7
not responding during mounting, 17
replicating shared files, 92
troubleshooting

clearing problems, 53
remote mounting problems, 53

to 59
weighting in maps, 77

session key, See conversation key
setgid mode, share command option

for, 24
setmnt command, 28
setuid mode

mount command option for, 18
Secure RPC and, 46
share command option for, 24

share command, 22 to 25
described, 22
/etc/dfs/dfstab file entries, 35 to

??
options, 23
security issues, 23, 24
syntax, 22
using, 25

shareall command, 26

shared resources, list of, 12
sharetab file

described, 12
mountd daemon and, 13

sharing files and file systems, See file
sharing

showmount command, 27
single-user mode and security, 46
slash (/)

/- as master map mount point, 66, 70
master map names preceded by, 65
root directory, mounting by diskless

clients, 8
soft option of mount command with -o

flag, 17
Solaris 2.5 release

NFS Version 2 support, 5 to 6
NFS Version 3 improvements, 6

special characters in maps, 87
statd daemon

described, 14
suid option of mount command with -o

flag, 18
superusers

autofs and passwords, 8
netnames, 47
running mount command as, 37

synchronizing time, 41
System V file system type, mount

command option, 15

T
-t option

lockd daemon, 13
nfsd daemon, 14

TCP
NFS Version 3 and, 7
selecting during mounting, 17

TCP/IP
application layer protocols, 4
described, 4
further information, 2
OSI Reference Model and, 2, 3

Index 119

telnet command, remote login, 46
temporary file system type, mount

command option, 15
time, synchronizing, 41
TLI, 4
tmpfs file system type, 15
transmission control protocol/interface

program, See TCP/IP
transport layer, 4
transport protocol, mount command

option for, 17
troubleshooting

See also error messages; errors
autofs, 97 to 100

avoiding mount point
conflicts, 84

error messages generated by
automount -v , 97 to 98

miscellaneous error
messages, 98 to 100

NFS, 51 to ??
determining where NFS service

has failed, 57
hung programs, 59
remote mounting problems, 53

to 59
server problems, 53
strategies, 51 to 52

U
UDP

described, 4
NFS Version 3 and, 7
selecting during mounting, 17

ufs file system type, 15
umount command

See also unmounting
autofs and, 8
described, 20

umountall command
syntax, 21
using, 22

UNIX

authentication, 39, 41
file system type option for mount

command, 15
“r” commands, 4
security issues, 39, 41

unmounting
See also autofs; umount command
autofs and, 8
examples, 20, 22
groups of file systems, 21 to 22
options, 20

unshare command, 26
unshareall command, 27
unsharing file systems

See also file sharing
unshare command, 26
unshareall command, 27

upgrading computers, 49
user datagram protocol, See UDP
/usr directory, mounting by diskless

clients, 8
/usr/kvm directory, mounting by

diskless clients, 8

V
-V option

mount command, 19
umount command, 20

-v option
automount command, 97 to 98
mount command, 18
umount command, 21

variables in map entries, 78 to 79
verifiers

described, 40, 44
returned to client, 45
UNIX authentication, 41
window, 44

vers= option of mount command with -o
flag, 18

Version 2 NFS software
mount command option for, 18
support, 5 to 6

120 NFS Administration Guide—November 1995

Version 3 NFS software
described, 6
mount command option for, 18

vfstab file
automount command and, 62
described, 12
mounting by diskless clients, 8
mounting file systems at boot

time, 36 to 37
NFS servers and, 37
printing mounted files in format

for, 18
viewing, See listing

W
WARNING: mountpoint already

mounted on message, 98
weighting of servers in maps, 77
window verifier, 44
write buffer size selection, 17
write errors, 6
wsize= option of mount command with -

o flag, 17

Z

Copyright 1995 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 USA.

Tous droits réservés.Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l’utilisation, la copie et la décompliation. Aucune partie de ce produit ou de sa documentation associée ne peuvent Être
reproduits sous aucune forme, par quelque moyen que ce soit sans l’autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s’il en a.

Des parties de ce produit pourront etre derivees du système UNIX®, licencié par UNIX Systems Laboratories Inc., filiale
entierement detenue par Novell, Inc. ainsi que par le système 4.3. de Berkeley, licencié par l’Université de Californie. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par
des fourmisseurs de Sun.

LEGENDE RELATIVE AUX DROITS RESTREINTS : l’utilisation, la duplication ou la divulgation par l’administation
americaine sont soumises aux restrictions visées a l’alinéa (c)(1)(ii) de la clause relative aux droits des données techniques et aux
logiciels informatiques du DFAR 252.227- 7013 et FAR 52.227-19.

Le produit décrit dans ce manuel peut Être protege par un ou plusieurs brevet(s) americain(s), etranger(s) ou par des demandes
en cours d’enregistrement.

MARQUES
Sun, Sun Microsystems, le logo Sun, Solaris sont des marques deposées ou enregistrées par Sun Microsystems, Inc. aux Etats-
Unis et dans certains autres pays. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays, et exclusivement
licenciée par X/Open Company Ltd. OPEN LOOK est une marque enregistrée de Novell, Inc., PostScript et Display PostScript
sont des marques d’Adobe Systems, Inc.

Toutes les marques SPARC sont des marques deposées ou enregitrées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. SPARCcenter, SPARCcluster, SPARCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARstation, SPARCstorage, SPARCworks, microSPARC, microSPARC II et UltraSPARC sont exclusivement
licenciées a Sun Microsystems, Inc. Les produits portant les marques sont basés sur une architecture développée par Sun
Microsytems, Inc.

Les utilisateurs d’interfaces graphiques OPEN LOOK® et Sun™ ont été développés par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique, cette licence couvrant aussi les licencies de Sun qui mettent en place OPEN LOOK GUIs et
qui en outre se conforment aux licences écrites de Sun.

Le système X Window est un produit du X Consortium, Inc.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE, Y
COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A REPONDRE A UNE UTILISATION PARTICULIERE OU LE FAIT QU’ILS NE
SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

CETTE PUBLICATION PEUT CONTENIR DES MENTIONS TECHNIQUES ERRONEES OU DES ERREURS
TYPOGRAPHIQUES. DES CHANGEMENTS SONT PERIODIQUEMENT APPORTES AUX INFORMATIONS CONTENUES
AUX PRESENTES, CES CHANGEMENTS SERONT INCORPORES AUX NOUVELLES EDITIONS DE LA PUBLICATION.
SUN MICROSYSTEMS INC. PEUT REALISER DES AMELIORATIONS ET/OU DES CHANGEMENTS DANS LE(S)
PRODUIT(S) ET/OU LE(S) PROGRAMME(S) DECRITS DANS DETTE PUBLICATION A TOUS MOMENTS.

