A Programmable Plaintext Recognizer

David A. Wagner * Steven M. Bellovin
Princeton University AT&T Bell Laboratories
Princeton, NJ Murray Hill, NJ
dawagner@princeton.edu smb@research.att.com

Phone: +1 908-582-5886
Fax: +1 908-582-3063

Abstract. Other researchers have studied the feasibility of a brute force
attack on DES using several known plaintexts. In practice, known plain-
text/ciphertext pairs may not be readily available, but statistical infor-
mation about similar plaintexts is much more easily aquired. Accord-
ingly, we design a statistical plaintext recognizer suitable for use in a
ciphertext-only key search machine. Software simulations indicate that
this design gives a powerful attack on the encryption of low-entropy data.

1 Introduction

Ever since the Data Encryption Standard (DES) was announced [1],
researchers have worried about its relatively short key size. Its crypto-
graphic strength notwithstanding, 56 bits seemed vulnerable to exhaus-
tive search. Diffie and Hellman quickly concluded that a highly parallel
custom-designed machine could indeed mount a successful brute force
attack on DES with a price tag of about $20 million [2], though that
estimate was disputed by some. Others have since refined the details of
the design and found a more accurate cost estimate [3, 4, 5]; in one of
the most recent papers, Wiener describes how to build a $1 million ma-
chine that can break DES in 3.5 hours with one or two known plaintexts
[6]. On the other hand, the only other known attacks on DES, linear
cryptanalysis [7] and differential cryptanalysis [8], require at least 2
known plaintexts. This is simply too much data to compare favorably to
brute force; thus, exhaustive key search is currently the most economical
attack known.

In practice, known plaintext may not be readily available. We describe an
improvement to the Wiener key search engine which eliminates the need
for known plaintext/ciphertext pairs; instead, it uses statistical knowl-
edge about plaintext to decide if it has found a possible key. Given a
quantity of reference data, our procedure initializes the modified search
engine with statistical information; when the plaintext is similar to the
reference data, a few ciphertexts are enough to discover the enciphering
key with high probability. We analyze the efficiency and cost of the mod-
ified key search machine and consider its implications on the strength of
DES. Software simulations of our design confirm its performance.

* Work was done while at AT&T Bell Laboratories.

2 Overview

Wiener’s design is based upon a machine that contains many copies of a
cheap custom-made chip, each searching a portion of the key space. Given
a plaintext /ciphertext pair (P, C) the heavily pipelined chip tests keys at
the rate of 50 million per second to find K such that K ~![C] = P. Each
clock cycle, the output of one trial decryption is compared for equality to
the known plaintext P. If there is a match, the key is saved; otherwise,
the trial key is incremented and the search continues.

Our aim is to find a replacement for Wiener’s simple equality test that
does not require a known plaintext/ciphertext pair. In theory, trial de-
cryption with the correct key should yield output which is statistically
recognizable as similar to the reference data, while trial decryption with
an incorrect key will produce uniformly random white noise. Thus, we
need a test that can reliably discriminate between true plaintext blocks
and random noise. Also, the test must be extremely fast—it should finish
in one clock cycle to avoid delaying the decryption pipeline. (More pre-
cisely, the aggregate rate of the recognizer, which may itself be pipelined,
must match or exceed that of the decryptor.) To do this, it must be
composed of just a few simple logical operations, such as additions, table
lookups, and comparisons; we want the plaintext recognition stage to be
roughly comparable in cost to the DES pipeline. If these conditions can
be achieved, then adding one plaintext recognizer to each DES pipeline
will make possible a ciphertext-only key search machine which costs at
most a small factor more than Wiener’s known plaintext version.
Plaintext recognition has been well studied from the perspective of clas-
sical cryptography. Published work on automated cryptanalysis of the
simple substitution cipher (and other classical cryptosystems) provides
a wealth of ideas to examine [9, 10, 11, 12, 13]. Common methods in-
cluded frequency statistics, digraph and trigraph statistics, the index of
coincidence, vowel recognition, probable word guessing, exhaustive dic-
tionary search, human interaction, and several exotic techniques. Only a
few of these are useful in our situation. To meet our constraints, we must
eliminate any classical methods which require large samples of plaintext
or lengthy calculations. This leaves single character, digraph, and tri-
graph frequency statistics as a natural starting point.

Diffie and Hellman proposed a very simple decision strategy: if the high
bit of all 8 bytes in the plaintext block is zero, save the key; otherwise,
discard it [2]. This strategy has the advantage of being simple and quick.
Unfortunately, this test only works for 7 bit text; we would like to handle
other types of data, if possible. Furthermore, frequency statistics are a
generalization of this strategy, and it seems reasonable to hope they will
achieve more powerful plaintext recognition capabilities.

The efficiency of any proposed plaintext recognizer can be measured
with several quantities. First of all, it is important for a good strategy to
minimize the number of mistakenly characterized trial decryption keys:
the quantities

p = Pr(K;'[C] saved |K; # K)
p = Pr(K;'[C] discarded | K, = K)

Table 1. Summary of notation

Name [Meaning

K The true DES key

K Trial DES key

C,C; |Ciphertext block

K;'[C]|The result from DES decrypting C with key K;

P Plaintext block, often K; '[C]

P; i-th byte of P, for 1 <i <8

p Prob. that an incorrect plaintext passes the plaintext recognizer
p Prob. that a correct plaintext fails the plaintext recognizer
k Number of ciphertext blocks used

w(z,y) |Weight of the (z,y) digraph

w(P) |Total weight of P

b Precision of w(z,y), in bits

¢ Scaling factor used to calculate w(z,y)

t

Threshold

should be as small as possible, where C'is a ciphertext block, K the true
DES decryption key, and K, a trial key. (See Table 1 for a short list of
notation.) Furthermore, a good strategy must be fast enough to keep
pace with the DES pipeline, and yet simple enough to implement on a
fairly inexpensive chip. Finally, a good strategy must be general enough
to work with many different types of reference data—once the design is
finalized and the chip fabrication begun, it becomes terribly difficult to
adopt a new decision strategy.

The operation of our key search machine is slightly more complicated
than for other designs. The attacker must possess several ciphertext
blocks and the ability to compile a large collection of data similar to
the enciphered plaintext. The cryptanalyst must analyze the reference
data, calculate optimal values for all the input parameters, and initial-
ize the key search machine with the ciphertexts and statistics. Then the
exhaustive search can begin.

Once a possible key is encountered, the rest of message can be decrypted
with it and the results presented to the operator or to some sophisti-
cated statistical analyzer for confirmation. So long as not too many key
candidates are selected for further analysis, these steps should not place
too much of a burden on the attacker.

3 Algorithm Possibilities

A simple first stab at a decision strategy is to compare the candidate
decryption’s byte probabilities with those of a sample of similar plaintext.

We save the key K if the probabilities exceed some threshold and discard
it otherwise. The threshold chosen should be small enough that the true
encryption key K isn’t likely to be discarded, yet large enough so that
not too many false trial keys K; # K are saved.

On the chip, this may be implemented with 8 lookups into a table con-
taining the probabilities for all 256 bytes followed by 7 multiplications.
Unfortunately, multiplication is typically quite slow in hardware. One
well-known improvement is to replace the product by the sum of their
logarithms [14, 11]. Small values of the sum correspond to plaintexts
which are similar to the reference data, and large values correspond to
plaintexts which resemble white noise. If we precompute the logarithms
of the probabilities and the threshold and store those instead of the raw
values, each multiplication can be replaced by an addition. This change
greatly speeds up the save/discard decision.

Generally, just one ciphertext block will not suffice to narrow down the
number of possible encryption keys enough, but with multiple ciphertext
blocks, much more powerful results can be achieved. Suppose we have a
plaintext recognizer which is fairly good at characterizing the output of
one trial decryption K; '[C]: it filters out all but p of the incorrect trial
keys K; # K, and discards the true decryption key K with probability p.
Given k ciphertext blocks {C1,...,Ck}, the improved decision strategy
specifies that a trial key K is to be saved if and only if every plaintext
passes the plaintext recognizer. The new strategy will discard all but p*
of the incorrect trial keys and throw out the true decryption key with
probability 1—(1— ﬁ)k = kp. The machine need not decrypt all available
ciphertext blocks. Unless Kt_l[Cl] passes the filter, there is no need to
try the other ciphertext blocks. Since almost all of the trial keys can be
discarded immediately after the first ciphertext block is decrypted, the
key search rate will not decrease noticeably.

Another possible improvement is to try using digraph statistics instead
of (or in conjunction with) single character frequencies. This should work
at least as well as the single-character model, though it does require a
larger memory array (256 x 256 entries instead of just 256).

We considered using trigraphs, but a more sophisticated data structure
would be required; a straight-forward approach would need a 256 x 256 x
256 array. Since our preliminary measurements did not show a significant
improvement compared with digraph statistics, we have not pursued that
approach any further.

We must now consider how to store the values p(z,y) in memory for a
hardware implementation. First of all, only a limited number of bits are
available for each array element; let b denote the width of each element.
To store the p(z,y) values in a b bit array element, scale them linearly
by a fixed constant ¢ > 0. Truncate w(z,y) so it is in the range 0 <
w(z,y) < (2° = 1)/2°.

There are several parameters that may be varied to maximize efficiency.
First, we must fix the precision b at design time; it should be small enough
that we don’t waste too much chip space on a huge memory array, yet
large enough that the logarithms have enough precision to discriminate
between random noise and true plaintexts. The rest of the parameters
can vary from reference set to reference set. Of these, the scaling factor ¢

has perhaps the greatest effect. To avoid waste and maximize efficiency,
we should pick an appropriate value so that the w(z,y) weights occupy
much of the available range between 0 and 1. More importantly, this
parameter controls the tradeoff between p and p: if ¢ is too large the
correct decryption key has a good chance of being missed, yet if ¢ is too
small, too many false trial keys are saved. The threshold ¢ also adjusts
the sensitivity of the plaintext recognizer, but in a slightly different way.
For convenience, call digraphs with maximum weight killer digraphs; that
is,

w(z,y) > (2b — 1)/2b — (z,y) a killer digraph.
Killer digraphs are the rarest of the rare; by definition, they are pairs
that should never occur in correct plaintext. Then the quantity ¢ roughly
indicates how harshly plaintexts are judged: a plaintext is rejected im-
mediately if ¢ killer digraphs are encountered in it. If the threshold ¢ is
too small, plaintexts with just one or two rare digraphs will be discarded
instantly. That is probably undesirable; a little lenience in allowing for
input errors or just the occasional unusual character is preferred.
Finally, the number of ciphertext blocks k is the last input parameter
which affects the efficiency of the decision strategy. Large values increase
the probability (kp) of discarding the true decryption key, so k should be
no larger than necessary. On the other hand, the more ciphertext blocks
we use, the better the chances of discarding incorrect trial keys (this
probability is approximately pk). Since reference data with less regu-
larity yields flatter digraph statistics and less information per ciphertext
block, more ciphertext blocks may be needed with these types of sources.
Because approximately 2°¢p* trial keys will have been saved by the time
the key space is exhausted if attacking DES, a good rule of thumb is
to choose k so that p* = 27°° or so, when feasible. (By contrast, the
original Diffie-Hellman solution has p = 27#, necessitating a k of at least
6. On the other hand, their g = 0.) All these parameters must be set
through empirical observations.
We must also decide what to do with digraphs (or single characters) that
never appear in the reference data; their frequency of occurrence is zero,
but the logarithm of zero is undefined. The obvious solution is to consider
the logarithm of zero to be some tremendously large negative number,
and proceed as usual. There is another problem, though. A zero which
appears in the frequency count of the reference data is not necessarily a
“hard” zero. In other words, the difference between a frequency count of
0, 1, or 2 is not likely to be statistically significant. The reference data is
only a finite random sample of plaintext, and this induces random fluc-
tuations in the observed frequency counts. Unfortunately, the logarithm
function amplifies the difference between a frequency count of 0 and 1
to a large extent. The fix is to perturb the zero frequency counts a little,
replacing them by 1 or some other small number [15, 16].

4 Modes of Operation

So far, we have only considered ECB mode, but in fact by taking advan-
tage of the XOR mask, most of the other standard modes of operation

can be attacked as well. Let F stand for the initialization vector (IV) if C
is the first block deciphered, or else a feedback variable if C is not the first
block. Cipher block chaining (CBC) mode is defined by the equations

P+« KT'[Cle F
F+ C

If the value of F' (which is just the previous ciphertext block in almost
all cases) is known, then it can be used in the XOR mask. Thus, CBC
mode can be attacked just as easily as ECB.

The cipher feedback (CFB) and output feedback (OFB) modes are variable-
length modes. The full 64 bit CFB mode is easy to understand: decryp-
tion is accomplished with the formula

P« K[Fl®C
F« C.

Again, the value of F'is usually just a ciphertext block and hence will
almost certainly be known; so 64 bit CFB mode can be attacked as easily
as ECB mode can. In general, the m-bit CFB mode transforms m-bit
plaintext blocks into m-bit ciphertext blocks according to the decryption
rules

P« left(K[F))® C
left64_m(F) — right64_m(F)
right (F) « C,

where left;(R) denotes the leftmost j bits of a 64 bit register R, and
right](R) is defined similarly. Multiple encryptions with the same key
are required to obtain a full 64 bits of plaintext in the m-bit CFB mode.
Attacking the m-bit variable-length modes requires additional logic, be-
cause obtaining a full 8 byte plaintext takes 64/m decryptions. Wiener
discussed this issue and concluded that adding support for the variable-
length modes increases the cost of a key search machine by 10% or
so. Furthermore, in our design attacking the m-bit modes increases the
search time by a factor of at most 64/m (though some savings are possi-
ble if most plaintext blocks can be discarded after examining just a few
digraphs).

Observe that ECB and CBC modes require the ability to decrypt known
ciphertext, while CFB mode (as well as OFB mode, we shall see) needs
encryption. No major changes to the DES pipeline are necessary; the
augmentation requires very little extra logic because of the similarity
between DES’s key scheduling in encryption and decryption modes.
The OFB mode is the trickiest mode to attack. The 64 bit version satisfies

P« K[Fl®C
F « KJ[F].
If the IV is known, then our probable plaintext attack applies to this

mode just as easily as any other; similarly, the m-bit OFB mode can be

broken just like the m-bit CFB mode if the IV is known. Unlike the other

modes, however, there appears to be no way to extend our ciphertext-
only attack to OFB if the IV is unknown. Some care is needed, though;
if any plaintext is known, the corresponding ciphertext can serve as the
1V for the following ciphertext block.

Deliberately and carefully hiding the IV seems like a useful technique for
achieving extra security with OFB mode. Since both parties must know
the hidden IV, it essentially serves as 64 more bits of “key.” However, the
operational characteristics of OFB mode render it unsuitable for many
applications [17].

5 Hardware Issues

Our design goal is to maintain a search rate of 50 million decryptions
per second with a cost roughly comparable to that of Wiener’s machine.
At 64 bits of output per decryption, this 1/O rate is near the upper
limit of current technology; accordingly, it is important to implement
the decision strategy and the DES pipeline on the same chip to keep
inter-chip I/O to a minimum. Since 1.0 square cm is the largest size chip
that can be comfortably fabricated with current technology, and Wiener’s
DES pipeline occupies approximately 0.4 square cm, we have about 0.6
square cm to implement a decision strategy. A digraph lookup table with
256 x 256 elements and 8 bits per digraph requires about 500 Kbits of
RAM, whereas commercially available memories pack up to 4 Mbits of
RAM on board one chip. We can therefore fit up to four copies of an 8-
bit digraph lookup table on the chip. Using multiple copies of the table
permits lookups to be done in parallel, which speeds up the decision
algorithm. The additional registers, masks, adders, and miscellaneous
logic are not too complex, and should fit easily in the remaining space.

The implementation of the decision strategy must also be very fast—
it must handle 50 million blocks per second to avoid stalling the DES
pipeline. The stratagems outlined so far involve table lookups, additions,
masking, and comparisons. Certainly 64 bit logical ANDs, XORs, and
comparisons with a register can be performed without difficulty at a
clock rate rate of 50 MHz. Today’s RISC CPUs can perform a 32 bit
integer addition in one clock cycle, so a 8 or 10 bit addition should be
no problem for our custom chip.

An alternative strategy would be to build a pipelined recognizer. This
would allow for slower steps, such as multiplication. The main restriction
is the recognizer must be able to sustain throughput at a rate at least
as great as that of the decryption engine. Care must be taken to avoid
contention for shared resources, such as the digraph table; a pipeline
where several different stages needed to access the same memory would
not be likely to yield an overall speedup.

Sometimes one trial key must pass through the DES decryption pipeline
several times, and this ability requires a slight hardware modification
of Wiener’s basic design. First of all, we need this modification to take
advantage of multiple ciphertext blocks. When the first ciphertext block
decrypts under K; to data which passes the plaintext filter, we must

re-insert K into the DES pipeline with a new ciphertext block. Fur-
thermore, if the RAM is too slow to calculate the weights of all the
digraphs in one clock cycle, we will sometimes need to stall the pipeline
momentarily: we must re-insert a trial key K if it cannot be rejected
after looking up just 4 plaintext digraphs. The two applications have
very similar requirements, so both can share the circuitry needed for key
feedback. In Appendix E of his paper, Wiener discusses the logic needed
to re-insert trial keys at the head of the DES pipeline; fortunately this
addition increases his cost estimate by only a small amount. The time
penalty is even smaller in most cases, as the proportion of trial keys that
require feedback is usually miniscule; however, some types of plaintext
do require more samples, as is discussed below.

If trial keys are recirculated, it is advantageous to recirculate the current
block and killer digraph counters as well. Otherwise, increasing the num-
ber of blocks examined increases the probability of rejecting the correct
key, since an improbable result from any single block could cause a re-
jection. We therefore must select not just a single ¢, but a collection of
thresholds ¢;.

Memory lookups could be more of a problem. Even the fastest RAM
has a delay time of 5 nanoseconds or so, and we need to calculate up to
seven digraph weights in 20 nanoseconds, the time for one 50 MHz clock
cycle to pass. The easiest way to achieve this would be to make seven
copies of the digraph weight array, and do the seven lookups in parallel;
unfortunately, there is not enough space on the chip for this solution.
Fortunately, most of the time we don’t need to look up all of the digraph
weights, as the sum of the first few weights is often already larger than the
threshold value. One solution, then, is to store four copies of the digraph
table (or as many as space permits) in 2 Mbits of 20 nanosecond RAM
so that the first four digraph weights can be found and summed in one
clock cycle. If those four are not sufficient to discard the key, it can be
reinserted at the top of the pipeline with the partial sum saved; then after
the key makes its way through the pipeline again, we may look up its last
three digraph weights and add them to obtain a total weight sum. The
slowdown inherent in this scheme will depend upon the reference data,
and could decrease the search rate to 25 MHz in the worst case. If the
slowdown is predicted to be too severe, another possibility is incorporate
faster RAM and add a second clock, so that all seven digraph weights
can be retrieved from memory in 20 nanoseconds, letting the pipeline
run at full speed. On the other hand, this alternative does have the
disadvantage of requiring multiple clock rates and faster memory, which
may be problematic. Fortunately, most types of reference data (such as
text) require on average very few digraph lookups before the incorrect
trial keys are discarded.

The primary factor affecting the capital cost of the new design is the
extra chip area; that in turn drives the yield down. There will also be
some additional control ciruitry needed to load the digraph tables. For
a chip of this design, doubling the area will increase the net costs by a
factor of 2.5 — 3. Since the cost of Wiener’s design is dominated by the
key search chips, our modification will at most triple the price.

The run time, and hence the cost per message, is also affected, since we

need to analyze more ciphertext blocks. Again, the increase is roughly
threefold. Naturally, one can trade off capital costs for time.

6 Software Implementation

We have not actually implemented this design. We have, however, built
software simulations to predict how well it would work in practice. The
results are encouraging—we learned which decision strategies were use-
ful, how to choose input parameters, and which reference data could be
efficiently recognized.

The experiments spanned a wide range of input parameters and types of
reference data. Some common classes of text were tried: generic English,
Shakespeare’s collected works, C source code, Postscript, TEX files, and
even articles from a USENET news group. We also experimented with
some less conventional types of data, such as executables from different
architectures, compressed files, and (as a control) DES ciphertext. Given
a set of reference files and a decision strategy, the software simulation
measured p and p. It also calculated the percentage of blocks which
required more than four digraph weight lookups. See Tables 2 and 3 in
the Appendix for a brief summary of our measurements.

These trials suggest how to choose values for the many input parame-
ters. First of all, note that a minor adjustment of the scaling factor ¢ can
greatly affect the number of characterization mistakes. This parameter
is delicate enough that often it must be adjusted by hand; perhaps some
clever software could successfully automate this process, though. Also,
the value of b (the number of bits of precision used in the digraph weight
table) has a definite effect on efficiency. For text, b = 6 bits is reason-
able, and 8 bits does not yield much improvement; on the other hand,
executables need 8 bits of precision. As increasing the precision up to a
full 10 bits gains nothing, b = 8 appears to be a reasonable design choice.
On the other hand, the threshold ¢ (the absolute minimum number of
digraphs examined before a block can be discarded) does not have as
much of an effect: a value of 1.5 or so seems reasonable across the board.
Perturbing the zero frequency counts seems to be a fairly useful tactic.
Both ECB and CBC modes were tried. Also, the use of several ciphertext
blocks to improve the recognition of incorrect trial keys helps tremen-
dously, as expected, though naturally this increases the runtime and
hence the cost per message.

Not all of the proposed strategies were helpful, though. First of all, single
character frequency statistics failed to provide any useful information
over and above the digraph statistics, even when both were used together.
In addition, calculating the weights with a non-linear function gave very
little benefit in our trials.

Our design successfully recognizes almost all of the types of plaintext
we examined. Most types of text can be efficiently attacked: typically
p=2"2%and p = 1/30 for text, so we can expect to find the decryption
key 90% of the time by using three ciphertext blocks. Moreover, binary
executables also fall to our ciphertext-only key search machine so long
as the attacker knows for which architecture the binaries were compiled:

p =275 and p = 1/12 are representative probabilities, which means that
with four ciphertext blocks the attacker has a 70% chance of discovering
the decryption key. Unfortunately, the search rate slows by a factor of
two if only four digraph weights can be looked up per DES decryption
cycle, though there is no penalty with faster RAM. In short, our design
indicates that encrypting low entropy data with single DES is not secure,
for it can be broken in four hours with a machine that costs just a few
million dollars.

We had no success against compressed data, suggesting that compression
before encryption is a useful security measure. The suggestion has been
advanced many times in the past, but we know of no previous trials. Since
it also accelerates the encryption of lengthy plaintexts, pre-compression
may be a useful tactic in in many situations.

Of course, switching to an encryption algorithm with a longer key length
remains the best way to thwart our attack and increase security. Triple
DES is a good choice: van Oorschot and Wiener estimate that triple DES
with two keys is about 10'® times stronger than single DES, and the
three-key version is even better [18]. IDEA is another possibility, though
systems which use single DES are more easily converted to triple DES.
The extra key bits needed to avoid brute force attacks could be agreed
upon in advance, or one could generate a large session key via Diffie-
Hellman exponential key exchange, which generally yields hundreds of
bits of shared secrets.

We conclude that single DES is disturbingly vulnerable to an exhaus-
tive key search machine designed for a statistical ciphertext-only attack.
Fortunately, there are several high quality cryptosystems available which
render our attack infeasible. Accordingly, users of single DES ought to
consider strongly upgrading to a more secure encryption algorithm.

References

1. NBS. Data encryption standard, January 1977. Federal Information
Processing Standards Publication 46.

2. Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis
of the NBS data encryption standard. Computer, 10(6):74-84, June
1977.

3. Gilles Garon and Richard Outerbridge. DES Watch: An examination
of the sufficiency of the data encryption standard for financial institu-
tion information security in the 1990’s. Cryptologia, XV (3):177-193,
July 1991.

4. Robert MclLaughlin. Yet another machine to break DES. Cryptolo-
gia, XVI(2):136-144, April 1992.

5. Peter C. Wayner. Content-addressable search engines and DES-like
systems. In Advances in Cryptology: Proceedings of CRYPTO 92,
pages 575—586. Springer-Verlag, 1993.

6. Michael J. Wiener. Efficient DES key search. Technical Report
TR-244, School of Computer Science, Carleton University, Ottawa,
Canada, May 1994. Presented at the Rump Session of Crypto ’93.

10.

11.

12.

13.

14.

15.
16.

17.

18.

Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In
Advances in Cryptology: Eurocrypt ’93, pages 386-397. Springer-
Verlag, 1994.

El Biham and Adi Shamir. Differential cryptanalysis of the full 16-
round DES. In Advances in Cryptology: Proceedings of CRYPTO
’92, pages 487-496. Springer-Verlag, 1993.

Solomon Kullback. Statistical Methods in Cryptanalysis. Aegean
Park Press, P.O. Box 2837, Laguna Hills, California 92653, 1976.
John M. Carroll and Lynda Robbins. The automated cryptanalysis
of polyalphabetic ciphers. Cryptologia, X1(4):193-205, 1987.
Robert W. Baldwin and Alan T. Sherman. How we solved
the $100,000 decipher puzzle (16 hours too late). Cryptologia,
XIV(3):248-284, July 1990.

David Applegate and Guy Jacobson. Solving simple substitution
ciphers by exhaustive dictionary search, November 1993.

Bruce R. Schatz. Automated analysis of cryptograms. Cryptologia,
1(2):116-142, April 1977.

Abraham Sinkov. FElementary Cryptanalysis: A Mathematical Ap-
proach. Random House, New York, 1968.

Jim Reeds, July 1994. Private conversation.

Caxton C. Foster. Cryptanalysis for Microcomputers. Hayden Book
Co., Inc., Rochelle Park, NJ, 1982.

V. L. Voydock and S. T. Kent. Security mechanisms in high-level
network protocols. ACM Computing Surveys, 15(2):135-171, June
1983.

P.C. van Oorschot and M.J. Wiener. A known-plaintext attack on
two-key triple encryption. In Advances in Cryptology: Proceedings
of CRYPTO °90, pages 318-325. Springer-Verlag, 1991.

A Summary of Simulation Results

Table 2. Performance with different reference data sets. Measurements are for
the optimal value of the scaling factor ¢; here b = 8 bits, ¢ = 1.5, and pertur-
bation is used. Also, the Pr(pipeline stall) column refers to the extra time for
chips equipped with slow RAM that can only look up 4 digraph weights per 20
nanosecond cycle time; chips with faster memory suffer no speed decrease.

Reference data p p|Pr(pipeline stall)
Shakespeare 2.5 x 1077(0.021 0.1%
Generic English 7.5 x 1077(0.024 0.2%
PostScript 2.5 x 1077]0.047 0.2%
TEX documents |1.1 x 1075/0.035 0.4%
C programs 5.2 x 1075/0.043 0.8%
rec.art.poems 1.1 x 107%/0.043 0.5%
sci.crypt 2.3 x 107°]0.033 0.8%
SunOS executables|3.1 x 107°(0.081 99%
Compressed files 0.52| 0.27 100%

This article was processed using the I¥TEX macro package with LLNCS
style

Table 3. Performance with different input parameters

Reference data b| t|Perturb p p
Shakespeare 6]1.5 Yes|2.5 x 10~7]0.021
Shakespeare 8|1.5 Yes|2.5 x 10~7]0.021
Shakespeare 10|1.5 Yes|2.5 x 10~7]0.021
Shakespeare 8/1.0 Yes|2.5 x 1077(0.022
Shakespeare 8|2.0 Yes|2.5 x 107(0.019
Shakespeare 8|1.5 No|1.9 x 1077]0.026
SunOS executables| 6(1.5 Yes|7.0 x 1073]0.051

1.5 Yes|3.1 x 107°|0.081
1.5 Yes|2.6 x 107°|0.083

SunOS executables
SunOS executables|1

[e=Rgo o)

SunOS executables| 8(1.0 Yes|4.5 x 1075]0.068
SunOS executables| 8(2.0 Yes|3.0 x 1075]0.081
SunOS executables| 8(1.5 No|2.0 x 1075]0.130

