A Best-Case Network Performance Model

Steven M. Bellovin*

February 12, 1992

Abstract

Network performance measures usually focus on average through-
put. We, however, were concerned with best-case behavior: how fast
could a packet traverse the network if there were no contention for
resources. By subtracting the path time fo a node from the path time
through the node, we were able to develop a simple best-case delay
model. This model was sensitive enough to determine the board-level
configuration of a router 750 miles away.

1 Introduction

Network performance measures usually focus on average throughput. We,
however, were concerned with best-case behavior: how fast could a packet
traverse the network if there were no contention for resources. We took
advantage of the fact that we had a SPARCstation-1 workstation!; those
machines have a timer with a resolution of 1pu-second. Our basic strategy
was simple. We first measured the elapsed time to a node. We then measured
the elapsed time to an identical machine, except passing through the node in
question. The difference in the two times is the transit cost for that node.
Such a strategy sounds simple, and indeed it is. There are, however, a
few points to consider. First, of course, one must take measurements of a
variety of packet sizes. This has the potential for complication, as host buffer

*AT&T Bell Laboratories. smb@ulysses.att.com
ISPARCstation is a trademark of SPARC International, Inc.

1th2 ih oo

mhgate keeper

cb Y ho2 hol

- Ethernet

Figure 1: Topology of the network

strategies may differ for packets of different sizes. Indeed, we observed this
effect, though it was fairly small.

Measurements such as these must be conducted on identical pairs of
nodes. One cannot sensibly compare the times to field the message if the
first and second machines are different. Fortunately, the backbone of our
internal network is composed of Cisco routers; this provided a good selection
of nodes to query. The section we measured is shown in Figure 1. Local area
networks are shown as solid lines; long-haul point-to-point links are shown
as dotted lines.

We must also consider what values to use for the cost of any operation.
Generally, one might pick the mean or median cost. Furthermore, one must
discard outliers; network behavior can get amazingly bad at times. Here,
however, we are interested in the best possible time, which is a simpler mat-
ter. The outliers do not matter; all that we care about is the absolute
minimum time. (To be sure, we are making the tacit assumption that in an
otherwise-idle network, the best-case time is deterministic. This assumption
may not be true in some cases.)

For our measurements, we used the TCP/IP protocol suite. Specifically,

we used the the ICMP[Pos81| echo and echo-reply messages. These are
about as low-level as one can get; they are generally processed in the kernel,
and hence rely the least on the vagaries of user-level dispatching.

2 Analysis

We began by measuring the basic host overhead on roc, our workstation, for
sending any ICMP packets. We did this by pointing the ping command at the
local host’s own address. There are a number of components comprising the
trip time: the user-level time to construct the packet, the basic system call
overhead, the time to copy the packet from the user process into a network
buffer, IP’s overhead to route the packet down to the loopback driver, the
trip back up through IP, the time to copy the packet back to user space, and
the overhead for decoding the received packet. The return trip includes the
same components; for the sake of simplicity, we assume that the two legs
are equal, and divide in half. The list is long, but it breaks down into two
components: a fixed overhead for sending any ICMP packet, and a per-byte
cost for the two copy operations. The time to initialize the packet data areas
do not count; the timestamps are computed just before it is sent, and just
after it is received.

The observations are shown in Figure 2. We used the S Data Analysis
System[BCW88]| to compute a least squares fit to the data; this is shown on
the graph as a straight line. As can be seen, the fit is fairly good, confirming
our analysis. The one-way trip time, in milliseconds, is defined by .696 +
.000757 x psize, where psize is the size of the packet.

Note the slight hump from 112 bytes to 512 bytes. This is due to the
host buffering strategies. Blocks of up to 112 bytes are copied into mbufs;
these are linked together to form the complete packet. However, when the
packet size exceeds 512 bytes, a single cluster buffer is used. This reduces
the overhead for processing the packet.

The next step was to measure the response time of the local Cisco router,
keeper, to echo packets. Again, we measured the round-trip time for a
variety of packets; see Figure 3. The measured one-way performance was
1.447 4+ .00287 x psize milliseconds per packet.

When actually sending on physical media, two more factors come into
play. The first is the serialization time per byte, i.e., the time to stobe

time
1 1ms

I I I
-0 500 1000

packet size

roc

Figure 2: Ping Local loopback timing

time
1 1ms

I I I
-0 500 1000

packet size

keeper

Figure 3: Ping times to the first router

the bits onto the wire. Since Ethernet networks? run at 10 megabits per
second, there is a cost of .0008 X psize milliseconds per packet. This figure
is small but measureable. The second factor is propagation delay. Assuming
a maximum cable distance of about 2500 meters, and a signal velocity of
.667¢, the propagation delay is .0125u-seconds, a number small enough to
disregard. We have chosen to disregard the framing overhead for a network
type (i.e., for the header, the CRC, etc.), preferring to fold it into the fixed
cost of the interface.
We can now work through our basic equation:

ciscoping = keeper — (roc + ether).

That is, the time required for the router to process the echo packet is the
observed delay minus the sum of the host overhead and the network delays.

Thus,

ciscoping = (1.447 + .00287 X psize —
((.696 + .000757 x psize) + .0008 X psize)
= .751 + .00131 X psuze.

Similar techniques let us calculate the overhead of Cisco’s MCI board, a
board with up to two Ethernet network ports and two serial interfaces. We
measured the times to hol and ho2 as 6.671 + .15189 X psize and 6.146 +
.15105 X psize milliseconds. Calculating

ciscomci = hol — (ho2 + ether)

yields a cost of .525 4 .00004 X psize milliseconds. Note the very low cost
per byte, effectively 0. This is in agreement with the architecture of the MCI
board; no data copying takes place if off-board forwarding can be avoided.

Note the comparatively high cost to reach ho2. At the time of these
measurements, the link between it and mhgate was a DSO circuit, i.e., a 56
kilobit per second trunk. Serialization time is .14285 milliseconds per byte,
much greater than for Ethernet networks. We should also add in propagation
time; however, for this short a distance (about 50 kilometers), it is much less
than one millisecond.

?Ethernet is a registered trademark of Xerox Corporation.

Table 1: Basic Model Parameters

Tag Fixed Cost Cost Per Byte Component

ethernet - .0008 Ethernet cost

ciscoping 751 .00131 Cisco response time

roc .696 .000757 local host overhead
att3b2600 2.480 .00263 3B2/600 response time
ciscomci 525 .00004 Cisco MCI board
ciscobtw 564 .000582 Cisco — between boards
ciscoold 1.153 .001562 old-style Cisco Ethernet
ciscoser 1.695 .002939 Cisco serial port

ds0 14285 56K bps line

3 Validating the Model

We validated our model by calculating the time to reach cbnewsa, an AT&T
3B2/600. A wearisome set of components had to be added together; their
values are shown in Table 1. The configurations of the different Cisco routers
was determined partly by experimentation, and partly by asking administra-
tors. We have not been able to account for the measured per-byte cost for
Cisco serial ports.

The “*” for the fixed cost for ds0 lines indicates that we must add in
speed of light delay between the two points. Note that this is cable distance,
approximately 1400 kilometers, not map distance. Furthermore, the lines
we use are not “pure” wires. Rather, they are subchannels of a DS1 (1.544
megabit per second) line routed via Chicago, and the multiplexor imposes a
delay of about .5 milliseconds.

A summary of the calculation is shown in Table 2. The calculated cost is
thus 20.7317 4 .3 X pstze. This is in excellent agreement with the measured
cost of 21.872 + 0.296 x psize, especially given the uncertainties in cable dis-
tance. A graph of the measured versus calculated times is shown in Figure 4.

Table 2: Time to Reach cbnewsa

Component Fixed Per byte 40 bytes 1024 bytes
9 Ciscos, 3 Ethernets 6.1959 .0110 6.6379 17.5106
Endpoints 3.1758 .00338 3.3110 6.6369
2 DSO lines .2858 11.432 292.6352
8 Muxes 4.40 - 4.40 4.40
Propagation 6.96 - 6.96 6.96
One-way Total 20.7317 3001 | 12.0072 307.3843

The dashed line is the predicted value.

4 Detecting an Anomaly

An attempt to check our calculations by measuring the time through ih1 to
ih2 — a pair of nodes about 1025 kilometers from us — failed. We had the
following equations:

ih1 = 13.953 4 .1502 X psize
ih2 = 14.517 4 .1516 X psize
ether = .0008 X psize.

Calculating
transit = ih2 — (ih1 4 ether)

yielded a cost of .564 + .0006 X psize. This seemed wrong; the serial line to
mhgate was supposedly on the same MCI card as the Ethernet controller, and
MCI cards have a per-byte cost an order of magnitude lower. After checking
our measurements and calculations, we insisted that the administrator verity
his configuration. The result: the node was misconfigured; the two ports
were on different boards, thereby necessitating a copy operation.

300 —

time 200 —

1 1ms

100 —

I I I
-0 500 1000

packet size

cbnewsa

Figure 4: Measured versus calculated times to cbnewsa

5 Security Implications

The ability to make accurate predictions and measurements has some benefits
for those charged with maintaining the security of a network. Assume that
two routers are connected by a DSO line. In that case, a 1000 byte packet
will have a serialization time of 143 milliseconds, a very noticeable figure.
An active wiretapper — one who receives each packet, and possibly modifies
it before retransmitting — will require a second serialization delay for the
retransmission. The alternative — examining each packet on the fly, and
sending an HDLC abort signal or a bad checksum — will show up in the line’s
error statistics counter. We conclude that our techniques make it possible to
detect active wiretappers.

Why is this useful, since we cannot use these mechanisms to detect pas-
sive eavesdroppers? There are a number of cryptographic protocols that can
be applied if one can assume that no active wiretapping takes place. For
example, the Diffie-Hellman exponential key exchange protocol[DH76] pro-
vides excellent security against a listener, but is useless against an opponent
who sits in the middle. We can employ this protocol if we can verify that no
active wiretaps exist.

6 Conclusions

Our model’s accuracy is limited by several factors. One is the minimum
system call time, measured at about 45u-seconds. Given the number of
system calls it takes to send and receive a packet, we cannot do better than
about 250u-seconds. There is also sufficient jitter in the dispatching clock
that a large number of observations is needed to observe a true minimum
value. Even then, we find that different trials can yield values differing by .1
milliseconds or thereabouts.

There is a great deal of uncertainty in estimated wire distances on long-
haul links. Apart from phone company routing decisions, we had to contend
with the corporate telecommunications strategy, which involved multiplexing
DS1 trunks and cross-connecting as needed. Thus, the link from ho2, in New
Jersey, to cb, in Ohio, actually passed near ih1, outside Chicago. This is
very far from how a crow would fly.

On a positive note, the linear fit seems to be quite good, despite the
buffering policies of the host. Our overall accuracy seems to be within a few
percent.

Looking at the model analytically, we find that long-haul network delays
are dominated by two factors. One is propagation delay; until someone fig-
ures out how to increase the speed of light, we can do little beyond avoiding
satellite hops. The other is the serialization delay imposed at each router.
Since each router must receive the packet in full before forwarding it, the
delay is linear in the number of hops. If the packet size is large with re-
spect to the line speed, this becomes a critical factor. Using more packets
of a smaller size can be a significant help, because transmission times can
then be overlapped. This suggests that the Internet’s path MTU discovery
algorithm[MD90] may not be an unmixed blessing. Two solutions suggest
themselves: increasing the line speed or decreasing the number of hops. The
latter may be achievable by using more large-scale communication subnets,
after the style of the old ARPANET, rather than dedicated point-to-point
links. For networks operating at speeds of a few hundred bits per second or
less, the impact may be significant.

References

[BCWS88] Richard A. Becker, John M. Chambers, and Allan R. Wilks. The
New S Language. Wadsworth & Brooks/Cole Advanced Books &
Software, 1988.

[DH76] Whitted Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, IT-11:644-654,
November 1976.

[MD90] J.C. Mogul and S.E. Deering. Path MTU Discovery, November
1990. RFC 1191.

[Pos81] Jon B. Postel. Internet Control Message Protocol, September 1981.
RFC 792.

10

