ELioTT 1.0

Frank DENIS <j@42-networks.com>
3rd February 2001

Abstract

ELIOTT is a tool to help system administrators and programmers discover insecure temporary files
creation, even in closed-source applications.
EL1OoTT watches a directory for files creation/deletion/writes using the dnotify facility of Linux kernel 2.4.x
. Every change is logged, even temporary files with a very short life time, that usually can’t be manually
noticed.
In addition to logging, ELIOTT can simulate hard-link ezploits in order to find and report vulnerable
applications.

1 Requirements.

The following prerequisite is needed :
e LINUX kernel 2.4.xx,
e GLIB (ftp://ftp.gtk.org) 1.2.8 or better.
e GCC / GNU MAKE

2 License and availability.

ELIOTT is covered by the GNU General Public License v2 and is freely downloadable from the following
location :
http://www.jedi.claranet.fr /eliott

Source tarballs, RPM files, Debian packages and Slackware archives are available.

3 Usage.

ELIOTT only watches a directory at a time, typically /tmp. That directory can be change with the —directory=
flag.

If ELioTT is launched with supervisor privileges, it performs a chroot() call in that directory and can take
further actions when the fake hard-links mode of operation is enabled. See below.

3.1 Simple I/O activity monitoring.

The easiest way to invoke ELIOTT is to run it with only —directory= or without any option (it will defaults to
/tmp) . I/0 activity is logged to stdout and no additional action is taken.
Here is a sample record for a file creation :

[17:53:19] - New file : [tempfile] (500,100) (s 644)

The first field is nothing but the time. tempfile is the name of the new file. (500, 100) is its owner’s wid/gid.
644 is the access mode (a la chmod) and s means we have a socket ((s)ocket, (1)ink, regular (f)ile, (b)lock
device, (d)irectory, (c)haracter device, (p)ipe) .

Later, if the temporary file got deleted, here is how it’s reported :

[17:55:03] - Deleted file : [tempfile]

3.2 Semi-automatic vulnerability discovery.

If ELioTT is launched with the —link option, the following actions are taken :

e When file XYZ is created in the watched directory, that event is logged to stdout as usual.

e Then, when XYZ is deleted, ELIOTT creates a fake temporary file (let’s call it ABC) and adds a hard
link to it, called XYZ.

e When a change occurs in the directory, ELIOTT stat()s every fake temporary file. If its size isn’t null,
some application probably wrote into XYZ. ELIOTT reports the potential attack as follows :

[18:14:12] - ** ALERT, insecure opening ** : [tempfile] -> [eliott-exploit-ZvQnlF]

tempfile is the file an application insecurely wrote to (XYZ), whereas eliott-exploit-ZvQn1F is the name of the
fake file (ABC) .

Fake temporary files always have the same permissions than previous real temporary files with the same
name. When ELIOTT runs with supervisor privileges, fake temporary files are also chown()ed to the previous
user.

e If a potential vulnerability is found when ELIOTT runs as a non-privileged user, it means that a buggy
application can probably follow any link, and overwrite any file if that application is running as root.

e If a potential vulnerability is reported when ELIOTT runs with euid=0, it means that a buggy application
follows at least links owned by one user. Configuration files, other temporary files and data files processed
by that application may be vulnerable.

3.3 Exploit evidence.

The ~link option can also be followed by a file name, like : —link=/etc/passwd . In that case, fake temporary
files won’t be created, but ELIOTT will add hard links to the target files, named with names of previous real
temporary files.

So when an insecure opening is logged it means that your target file has been modified. You got an exploit.
Find the buggy application, fix it and send a patch to its author.

4 Example.
The following tests were made on a Suse 7.0 system, with this software :

e LINUX kernel 2.4.1acl,

e GCC 2.95.2-117

/tmp was a swapfs filesystem. I copied /etc/shadow to /tmp/shadow for the last point, but unless the
vulnerability comes from swapfs the exploit should work as described if /tmp and /etc are on the same
filesystem. If an exploit works with hard links, you can always try with symbolic links anyway.

See if temporary files are created. When compiling the kernel from the source code, the -pipe option is
passed to GCC almost everywhere. However, let’s see if temporary files are created.

(ttyl - non-privileged user) $ eliott
(tty2 - root) # cd /usr/src/linux ; make clean ; make

(ttyl - Eliott log)

[18:46:09] - New file : [cctaRIuU.i] (0,0) (f 600)
[18:46:09] - Deleted file : [cctaRluU.i]

[18:46:09] - New file : [cctCILnX.i] (0,0) (f 600)
[18:46:09] - Deleted file : [cctCILnX.i]

[18:46:14] - New file : [ccQpbKhf.i] (0,0) (f 600)
[18:46:14] - Deleted file : [ccQpbKhf.i]
[18:46:14] - New file : [ccmIXCOh.i] (0,0) (f 600)

[18:46:15] - Deleted file : [ccmIXCOh.i]
[18:46:51] - New file : [ccupROP3.i] (0,0) (f 600)
[18:46:52] - New file : [ccdcu905.s] (0,0) (f 600)
[18:46:52] - New file : [ccA72Kah.o] (0,0) (f 600)
[18:46:52] - Deleted file : [ccAT2Kah.o]
[18:46:52] - New file : [ccA72Kah.o] (0,0) (f 644)

Okay, temporary files are created. The last three lines are interesting : the same name was used for two
consecutive files.

See if the temporary files are insecurely created. Now, let’s try to be more aggressive to see if what
we just discovered may be dangerous.

(ttyl - non-privileged user) $ eliott —link
(tty2 - root) # cd /usr/src/linux ; make clean ; make
(ttyl - Eliott log)

[18:54:20] - New file : [ccR9sgqc.o] (0,0) (f 600)

[18:54:20] - Deleted file : [ccR9sgqc.o]

[18:54:20] - Added fake link : [eliott-exploit-P4Pts8] -> [ccR9sgqc.o]

[18:54:20] - ** ALERT, insecure opening ** : [ccR9sgqc.o] -> [eliott-exploit-P4Pts8]

(tty2 - root)

gee -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -o conmakehash conmakehash.c
/usr/i486-suse-linux/bin/ld: cannot open /tmp/ccR9sgqc.o: Aucun fichier ou répertoire de ce type
collect2: 1d returned 1 exit status

make[3]: *** [conmakehash] Error 1

Uh-oh... Interesting. A non-privileged user was able to stop a compilation launched by root, and a possible
serious security vulnerability is reported.

Exploit the vulnerability. Let’s see if we really found a hole with a real exploit.

(ttyl - non-privileged user) $ md5sum /etc/shadow
a7¢35£3099a5abbcdabdacad1820f6¢ce /etc/shadow
$ eliott —link=/etc/shadow

(tty2 - root) c¢d /usr/src/linux ; make clean ; make
(ttyl - non-privileged user) $ md5sum /etc/shadow
4ee6429246d533eb6f0fdcad375b01da /etc/shadow

Right, we found an exploit.

