ITS4: A Static Vulnerability Scanner for C and C++ Code

John Viega, J.T. Bloch, Tadayoshi Kohno, Gary McGraw
Reliable Software Technologies
21351 Ridgetop Circle, Suite 400, Dulles, VA 20166
phone: (703) 404-9293, fax: (703) 404-9295
email: {viega, jtbloch, yoshi, gem}@rstcorp.com
http://www.rstcorp.com

Abstract

We describe 1ITS4, a tool for statically scanning
security-critical C and C++ source code for vulnerabil-
ities. Compared to other techniques, our results indi-
cate that this approach stakes out a new middle ground
on accuracy, while being efficient enough to give real-
time feedback to a developer during coding. Our tech-
nique is also simple enough that it can easily be ap-
plied to C++, despite the complezities inherent in the
language. We have used our tool to find new remotely-
exploitable vulnerabilities in a widely distributed soft-
ware package, as well as a major piece of e-commerce
software.

Our tool, along with its source code, is available
from http://www.rstcorp.com/its]/.t

1 Introduction

The C and C++ programming languages are a
detriment to writing secure code, because the lan-
guages and their supporting libraries make it easy for
programmers to add vulnerabilities to their code in-
advertently.

For example, the C standard library defines the
gets routine, which takes as a parameter a pointer to
a character, s. The gets function reads text from the
standard input of a program, placing the first charac-
ter at the location to which s points. Subsequent data
are placed consecutively after s in memory. Bytes are
read from the standard input until a newline or end
of file character is reached, at which point the buffer
is terminated with a null character. The programmer
has no way to specify how big a buffer is being passed
to gets. As a result, if the buffer is n bytes and an
attacker tries to write n+m bytes into the buffer when
running the program, the attack will always be suc-
cessful, as long as the data does not include newlines.

INote to reviewers: this page is expected to go live on Febru-
ary 22. Source code is available earlier by request.

There are two significant risks in this case. First,
variables adjacent in memory to the buffer can easily
be overwritten. If such variables store security-critical
data such as an access control list, then a wily attacker
can modify the data to great advantage. The second
risk is that an attacker will be able to trick the pro-
gram into running arbitrary code. Such stack overflow
attacks are perhaps the most common security flaw in
applications today. The technical details of such at-
tacks are discussed widely in the security community.
[6, 17

In practice, the presence of gets in a program al-
most always signals a security problem. Nonetheless,
this function has remained in the standard C library
since the early days of the language. Many simi-
lar problems pervade the library. Some well-known
“gotchas” include sprintf, strcpy and strcat.
Wagner[17] discusses more subtle buffer overflow prob-
lems with common C functions, including the so-
called “safe” alternatives to these functions, including
strncpy and strncat.

The problem of widespread security vulnerabilities
easily finding their way into C and C++ programs is
by no means restricted to buffer overflow conditions,
even though they are the most common type of er-
ror. For example, system and popen, two library calls
for running programs through the command shell, are
both notoriously difficult to use correctly.

Nonetheless, these functions are commonly used in
security-critical applications. Indeed, so are the well-
known unsafe string operations, including strcpy and
sprintf. For example, sendmail version 8.9.3 boasts
285 individual calls to strcpy alone. If these problems
are so well known, why are they still encountered so
often?

We believe based on personal experience that there
are several factors contributing to this problem:

1. Despite the fact these problems are well known,

they are not universally known. Programmers
who have heard about a problem aren’t always
thinking about it when they use a questionable
call. Many programmers give no consideration to
security at all until after all the code has been
written.

2. Programmers often know that a particular call
may introduce problems, but do not know what
the potential problems are.

3. Programmers are often unaware of what should
be corrected to avoid a known problem.

4. Programmers are likely to take the easiest ap-
proach, hoping that their use of a hazardous con-
struct is either not exploitable, or that no one will
figure out that they have a problem (the “security
through obscurity” argument).

Unfortunately, there are few good sources of infor-
mation about writing secure software. Such sources
would help alleviate problems through education, but
will not represent a complete solution because the pro-
grammer must remain security conscious.

Adding to these obvious problems, there are other
categories of bugs that are far less well known, and
far more subtle. For example, synchronization issues
such as race conditions can often lead to security vul-
nerabilities. The “time-of-check-time-of-use” (TOC-
TOU) category of file-based race conditions identified
by Bishop and Dilger[5] is a good example. Many
programs that use temporary, publicly writable stor-
age space are susceptible to being raced by a mali-
cious process. Problems arise when a process checks
information on a file (such as whether or not it al-
ready exists), then later uses the file, assuming that
the recently checked information is still true. For ex-
ample, a setuid text editor might open a temporary
file ”/tmp/foo” after checking to see that it does not
already exist. After the check, but before the file is ac-
tually opened, a malicious attacker symbolically links
a temporary file with the same name to /etc/passwd.
The attacker then types his new password file into the
text editor and saves it, at leisure.

Many programmers would never think that such an
attack was even a possibility. Even worse, fewer pro-
grammers would know how to avoid race conditions
and other hazards. For example, one common solution
among people supposedly in the know is to create a
temporary file name that is meant to be hard to guess
by appending a unique string that is some transforma-
tion on the output of a system random function such
as rand. Unfortunately, such solutions are poor, since

most random number generation routines generate re-
producible output based on a seed value. Choosing a
secure seed is itself a difficult software security prob-
lem.

We believe that in an ideal world, the program-
mer should need to know nothing about security; the
abstractions and tools used in programming should
be so good that there is miniscule chance of the pro-
grammer ever writing code that contains a security
bug. Of course, this goal is unrealistic. Determining
whether “untrusted” data is able to affect “trusted”
data in a general purpose manner is quite a complex
problem, and currently requires the programmer to
annotate variables with what is essentially a security
policy [14]. There is currently no realistic hope that
this task could ever be completely automated.

The C and C++ languages are unlikely to become
inherently more secure anytime soon. To make up for
this shortcoming, we believe that programming envi-
ronments should attempt to ease the burden of writing
secure software for the end programmer. For example,
both editors and program compilers can be made to
examine code for potential security violations.

Such a paradigm works well for more mundane er-
rors. Editors catch some errors, especially those of a
syntactic nature. Compilers are more powerful, de-
tecting syntactic errors, and more complex problems.

Why have the editor catch errors when compilers
are available? There are benefits. The main bene-
fit is that the user receives more immediate feedback
from an editor than a compiler. Plus, editors must be
interactive, real-time applications, whereas compilers
are generally slow. Every bug the editing environment
catches can potentially spare the programmer an ad-
ditional compile when building and testing a program.

We see similar parallels in the area of static software
vulnerability detection. On one end of the spectrum,
“quick-and-dirty” approaches should be available to
the programmer as early in the development cycle as
possible (preferably as the programmer types), even
if they forego a significant amount of precision. Our
work falls in this space. On the other end of the spec-
trum, compilers (or similar tools) should be capable
of performing a much higher-assurance static security
analysis at build time, even if such an analysis is time
consuming.

2 The problem with grep

ITS4 was developed to address the need for a prac-
tical, widely applicable tool to help people identify po-
tentially unsafe constructs in C and C++ code. While
we certainly would find such a tool useful in the course
of developing our own security-critical software, the

primary motivation was to save ourselves time when
performing security audits of C and C++ source.

Before ITS4, we would use grep at the command
line as one part of a source code audit (as we believe
many people do). The primary goal was to identify
locations at which a program might fall prey to the
same old bag of tricks. We almost exclusively looked
for call sites to standard library functions with known
issues. While this technique was indeed useful for find-
ing actual vulnerabilities, we found it to be lacking in
several respects:

1. Too much expert knowledge is required.
There are dozens, or even hundreds, of vulnera-
ble system calls; many rarely appear in the wild.
We found it very hard to remember everything for
which we should search, and found ourselves too
lazy to spend a lot of time looking up such infor-
mation in our rather poor notes and our scattered
references.

By contrast, we believe that a good tool low-
ers the requirement for possessing expert knowl-
edge by keeping a database of vulnerabilities.
This database would include a description pos-
sible problems, hints on how to tell if there really
is a problem, and suggested fixes.

2. Using grep is too inflexible. It would be use-
ful for the code auditor to be able to sort data
intelligently. For example, an auditor may wish
to look at vulnerabilities in order on a per-file ba-
sis, instead of looking at all strcpys followed by
all sprintfs, etc. Also, an auditor might want to
look at all buffer overflow problems at once, fol-
lowed by all TOCTOU problems. Unfortunately,
grep alone cannot readily provide this sort of
functionality; a special-purpose tool is necessary.

More importantly, it would be useful to perform
other forms of analysis in addition to the grep,
to help refine the results. For example, a heuris-
tic for detecting race conditions[5] may help keep
the auditor from having to check dozens of calls.
Grep does not provide a good framework for such
analysis, since it affords no data structures repre-
senting the program (e.g., there are no parse trees
or token streams).

3. There tend to be too many false posi-
tives. Since grep is only performing simple string
matching, its false positive rate can be quite frus-
trating. We’ve found that when a user has to
sift through high proportions of false positives,

it is common for a user not to examine individ-
ual instances closely or at all.? We call this the
“get done, go home” phenomenon. We postu-
late that this phenomenon contributes to the fact
that there are several reported cases of signifi-
cant vulnerabilities escaping notice during secu-
rity audits[17].

2.1 False positives

It is not unheard of to see risky function names
mentioned in comments or string literals.? Similarly, it
is not uncommon practice for someone to use a macro
definition such as:

#define safe_strcpy(dst, src) \
(sizeof (dst) < strlen(src) 7\
strcpy(dst, src) : abort())

Every instance of safe_strcpy encountered by
grep will be flagged as a potential problem. To get
rid of all those instances, grep must be rerun, with a
more complex command line.

From our experience, these problems combined
happen surprisingly often in real applications. See
Section 6.1 for some results in this area.

Another type of false positive is a call that can al-
most trivially be ruled out from context. For example,
running grep on ssh version 1.2.26 yields 134 calls to
sprintf. 80 of these calls can be quickly classified as
“very unlikely to be a problem” once the context is
examined. Consider the following examples from that
distribution:

sprintf (hex + 2 x 1, "%02x", byte);
sprintf (buf, "select: %.100s\r\n",
strerror (errno));

In the first case, it might be possible to scribble into
memory, but the odds are incredibly low that anything
interesting would be possible even if we could, since
we only get to write a single byte. Generally, we would
ignore any such problems in our audit, because expe-
rience tells us that it is not a good use of our time to
examine such cases.

In the second case, the programmer has ex-
plicitly specified that no more than 100 bytes of
strerror (errno) are to be copied into buf. Gen-
erally, that indicates someone is pretty sure buf is at

2In fact, if a user doesn’t find a vulnerability fairly quickly,
we often find people claiming that the code is secure without
finishing their audit!

3Reviewers, we plan on determining how common this prac-
tice actually is in several big packages, including sendmail and
wu-ftpd.

least that long. Of course, mistakes can happen. How-
ever, we generally classify these call sites as “low risk”,
and only examine them if time permits.

Similarly, the following can potentially be ex-
ploitable in theory, but seldom is in practice:

strcpy(dst, "\n");

If an experienced user can trivially prioritize all the
code shown above, a good tool should be able to do
the same in an effort to avoid the “get done, go home”
phenomenon as much as possible.

2.2 False negatives

Note that, theoretically, false negatives are possi-
ble with grep; i.e., it is possible to fail to report a call
site, even though it is in the source and will be parsed
by the compiler. However, such (potential) false neg-
atives do not tend to be a significant problem in prac-
tice. Consider the following cases:

1. A function we wish to flag is used in a
macro. This case is not much of a problem, es-
pecially if we remember to grep through header
files as well as the source. If we do so, we are
bound to flag the macro definition.

Additionally, finding one of our functions of in-
terest in a macro can help reduce the amount of
spam we must wade through to perform useful
analysis. For example, sendmail 8.9.3 defines the
following macro:

#define newstr(s)\
strcpy(xalloc(strlen(s) + 1), s)

This macro is clearly never going to lead to any
buffer overflow problems, given no bugs in xalloc
4. However, newstr is called from 179 sites, sav-
ing us much manual inspection. If the macro were
not so clearly safe, it would be pretty easy for us
to also grep for newstr.

ITS4 behaves the same as grep does in the face
of macros.

2. A function we wish to flag is applied indi-
rectly through a function pointer. Consider
the following code:

char *(xfp) (char *, const charx);
fp = strcpy;

4But it may be disastrous when the system runs out of
memory.

(xfp) (dst, src);

While grep will flag the assignment to a function
pointer, it obviously will not catch applications
through that pointer. Such call sites must be dis-
covered by manual inspection. This situation is
not even caught by the technique presented in
[17], though it is certainly possible for static anal-
ysis to flag these call sites if a sufficiently powerful
alias analysis is performed.

If the pointer to strcpy is obtained without spec-
ifying the name of the function (e.g., by calculat-
ing the location from a known offset to another
function) no warning results—a true false nega-
tive (assuming the call was actually a real vul-
nerability). However, such code is generally not
found outside of obfuscated C contests.

ITS4 behaves like grep with respect to function
pointers.

3. A call to a function we wish to flag is sep-
arated across multiple lines. For example:

int main(int argc, char **argv)
{
char buf[100];
if (argc > 1)
str\
cpy(dst,argv([1]);
return 0;

}

In this case, grep will produce a true false nega-
tive. However, in practice, breaking a single to-
ken across multiple lines is rare (except perhaps in
compiler test suites and more obfuscated C con-
tents).

ITS4 does not share this problem because of our
parsing strategy.

3 Why not more precise analysis?
3.1 Parsing strategy

ITS4 performs only simplistic analysis on source
code (as described in more detail in the next section).
A large part of the reason why ITS4 does not per-
form analysis of any real sophistication is because of
its parsing strategy.

ITS4 breaks a non-preprocessed file up into a series
of lexical tokens, and then matches patterns in the
stream of tokens. Matching code is added by hand,

Package Total counted lines | Percent passive
wu-ftpd-2.4 6613 8.65%
net-tools-1.33 8493 9.73%
sshd-1.2.26 21336 15.45%
sendmail-8.9.3 37124 17.95%
apache-1.3.9 60543 27.54%

Table 1: Code not compiled into an average configu-
ration

so non-regular patterns can be recognized. When per-
forming more sophisticated static analysis, it is gen-
erally easier to use a fairly complete, easy to navigate
representation of a program, such as a parse tree gen-
erated from a context-free parser.

3.1.1 False negatives

One reason we chose not to use a “real parser” was
that we wanted to have a false negative rate of as
close to 0 as possible. Analysis tools using traditional
parsing (such as the 1lint family of tools) can only an-
alyze a single build of a program at once, since there is
currently no known technique for parsing C and C++
programs with preprocessor directives into a single ab-
stract syntax tree.

As developers ourselves, we want to check every
possible build of our program, not just the build we use
to develop. As people who audit the code of others, we
also want to examine the entire program easily with-
out having to specify multiple build configurations and
keep track of uncovered code.

Under the assumption that people aren’t often go-
ing to analyze more than a single build, we examined
several large pieces of open-source software to see how
much source such an analysis will miss. We wrote
a simplistic preprocessor that counts how many lines
of original source (not counting system headers) will
be included into an executable (we call these active
lines), and how many will not be (we call these pas-
sive lines). This tool is not sophisticated enough to
handle complex conditional expressions, so in those
cases, we evaluate them by hand, and substitute a
constant expression. We ran this tool on several large
open-source projects, using default configurations for
a Pentium-90 running Redhat 5.0. The tool counts
lines of source and blank lines, but omits comments.
We did not count lines in packaged third-party soft-
ware. All preprocessor directives are ignored in our
statistics. The results are shown in Table 1.

Even 8.65% of a program is quite a large portion
not to consider during analysis. In the testing world,
91.35% statement coverage is not considered adequate.

Although we elide per-module data for the sake of
brevity, we should note that the percentage of pas-
sive lines in individual modules can vary greatly. This
means that static analysis tools can fail to analyze
mission-critical modules accurately.

For example, the net-tools package includes code
to support IPv6. However, if HAVE_AFINETG is not
defined, then none of the functionality in the IPv6
portions of net-tools will be examined by a static
analysis tool.

Of course, multiple builds can be made. But the
analyst has to figure out which builds to make, compile
each, and run the entire analysis algorithm repeatedly.
We currently do not know how many builds of each of
the applications above would require analysis. Future
work will address this question.

3.1.2 Practicality

Another reason why we chose not to use “real” pars-
ing was the desire to immediately produce a practical,
widely applicable tool that developers can use. We
wanted something “quick and dirty” that avoided all
the difficulties that we would encounter in “real” pars-
ing. The most significant hurdle was the large, com-
plex nature of C++’s syntax. Another factor was the
amount of time required to design the data structures
used by analysis techniques.

3.1.3 Interactivity

A third reason for not using “real” context-free pars-
ing is that we wanted to be able to support interac-
tive programming environments such as Emacs and
Microsoft Visual C++ in real time. We would like
to see potential security errors highlighted in red, like
bad spelling in Microsoft Office applications. In other
words, as the programmer enters code, the program-
ming environment should recognize the likelihood of
any particular piece of code being a security problem,
and act appropriately.

Unfortunately, traditional parsing techniques are
not suitable for meeting this goal, since they only work
reliably on a semantically valid program. Highly ac-
curate error handling in traditional parsers is notori-
ously difficult[1]. Also, traditional parsing considers
an entire file as a unit, and thus may end up being
inefficient in practice if an individual file was parsed
after every few keystrokes.

However, heuristics based on regular languages are
known to work fairly well in similar situations, even if
they are not fully precise. For example, Emacs uses
regular-expression based matching on code in order
to perform syntax highlighting. Though its inferences
about the syntax of an individual token are occasion-
ally wrong, Emacs is right far more often than not.
Similarly, the Microsoft Office incremental spelling
and grammar checker can fail to parse an English sen-
tence properly. Despite shortcomings, these tools are
widely used and highly useful.

3.2 Current limitations of advanced static
analysis for C and C++

We believe that static analysis of a quality beyond
that available in ITS4 can have a tremendous impact
on software security in C and C++. However, we iden-
tify several problems, some of which make a practical
tool involving such technology difficult for the time
being.

1. C’s liberal nature makes the language
poorly suited to static analysis. The general
laxness of the C language (e.g., arbitrary pointer
arithmetic and gotos) makes many types of static
analysis intractable in the worst case[11]. In the
average case, C’s heavy reliance upon pointers
makes any sophisticated analysis very difficult.

2. The added complexities of C++ make it
very difficult to analyze. Though resent re-
search on static analysis has made some head-
way into performing useful analyses on object-
oriented languages in general, C++ suffers be-
cause it is both object-oriented and derived from
C. Currently, object-oriented analysis techniques
are still cutting-edge research; performing an ac-
curate analysis in an environment with classes,
dynamic dispatch and templates is a large chal-
lenge.

3. Static analysis in a multi-threaded envi-
ronment is difficult. In a production environ-
ment, multi-threaded applications are quite pop-
ular on Windows platforms, and are becoming
ever-more popular for Unix-based systems. Un-
fortunately, the potential for interaction of data
between threads must be considered by any anal-
ysis tool that wishes to be correct.

4. Better static analysis is less efficient. ITS4,
which performs a very simple analysis (described
in Section 4), analyzes about 9000 lines of code
per second on a Pentium-90. For sendmail
8.9.3, it took 5.916 seconds on average to scan

the code in CPU time, and never more than 7.5
seconds of wall time (more detailed performance
information is given in Section 4.6).

[17] presents a static analysis technique that
uses constraint solving to try to determine which
buffers can potentially overflow, and by how
much. That technique ignores control flow infor-
mation as well as context. Their prototype tool
can process sendmail in about 15 minutes on a
Pentium III. It is believed that a version of the
software could be made to run on the order of
a few minutes if the code were better tuned for
performance [16]. We anticipate that a similar
analysis that handled flow and context properly
would be at least an order of magnitude slower
still.

These problems played a significant role in our de-
cision to avoid complicated forms of analysis in ITS4.
The conclusions we drew from our experience with
static analysis is that it would take several years of
solid effort to produce a robust, precise, portable and
(most importantly) practical tool that does an excel-
lent job of statically analyzing source for security vul-
nerabilities.

4 It’s The Software, Stupid! (Security
Scanner)

This section discusses version 1.0b1 of ITS4. The
current version of the tool supports a command-line
interface to the scanning engine, and integration with
Gnu Emacs.

4.1 Initial scanning and assessment

ITS4 takes one or more C or C++ source files as in-
put, breaking each into a stream of tokens. After scan-
ning a file ITS4 examines the resultant token stream,
comparing identifiers against a database of “suspects.”
The database is discussed in more detail in the next
subsection.

Checking each identifier is a heuristic that is not
completely accurate: security neutral identifiers may
be flagged. The most obvious example is variable
names. Consider the following C code:

#include "test.h"
int main()
{
int strcpy;
return 0;

3

Running ITS4 on this code produces the following
results:

[viega@lima c]$ its4 testl.c
testl.c:3:(Very Risky) strcpy

This function is high risk for buffer overflows.

Use strncpy instead.

Obviously, we would like to avoid these false pos-
itives. However, we cannot accurately determine all
identifiers that are lexically used as variables without
“real” parsing. The largest problem is that the pre-
processor can arbitrarily modify our identifiers. In the
program above, both the int specifier and the variable
strcpy could be replaced with arbitrary code.

We could make a “closed-world” assumption that
our scanner gets to examine all code that will be used
to build the application. However, to handle the gen-
eral case correctly, we would have to implement a full
preprocessor, as the programmer might do arbitrarily
complex things. The problem is made worse in that
the preprocessor can have arbitrarily complex expres-
sions in conditionals, and the resulting value of each
conditional can change from build to build by passing
in flags at the compile line.

Fortunately, programmers don’t generally pervert
the preprocessor in this way— a simpler analysis usu-
ally suffices for practical applications. Of course, pro-
grammers don’t generally use strcpy as a variable
name. On one hand, we could add further complex-
ity to our code, and in the theoretical worst case have
false negatives. On the other, we could err on the side
of conservatism, potentially adding false positives. We
chose the conservative approach.

While our approach does seem to do what the
programmer expects with regard to flagging function
calls almost all the time, we have run into one case
where it did not do so. In particular, when scanning
sendmail-8.9.3, we found several uses of a variable
named stat, which happens to clash with the stat
call, often involved in race condition problems.

Scanning for all identifier tokens had unexpected
benefits. It had been suggested that we could restrict
our checks to those identifiers that are followed by a
left parenthesis. We did not do so due to the poten-
tial for preprocessor abuse, and because our tool flags
assignments of dangerous functions to variables (see
Section 2.2).

4.2 The vulnerability database

ITS4 reads a vulnerability database from a text
file at startup, keeping the entire contents resident in
memory for the lifetime of the tool. Vulnerabilities
can be added to the database, removed and changed
with ease.

The ITS4 vulnerability database currently contains
131 calls culled from many sources[4, 5, 8] includ-
ing the Bugtraq archives[12] and our own personal
experience. The largest single class of problems in
our database are race conditions involving file ac-
cesses. Functions susceptible to buffer overflows also
account for many entries. Several different pseudo-
random number routines are flagged because they
are often used (incorrectly) to provide entropy in
security-critical applications. For example, develop-
ers may use these functions to shuffle cards or gener-
ate cryptographic keys in situations where security is
important[3, 9].

For each call, we store the following information:

e A brief description of the problem.

A high-level description of how to code around
the problem.

e A relative assessment of the severity of the prob-
lem, on the following scale: NO_RISK, LOW_RISK,
MODERATE RISK, RISKY, VERY RISKY, MOST_RISKY.

e An indication of what type of analysis to per-
form whenever the function is found in the token
stream.

e Whether or not the function can retrieve input
from an external source such as a file or socket.
ITS4 has a mode that finds all points at which in-
put can come in to the program, because we often
found ourselves wanting that sort of functionality
in our manual audits.

Unfortunately, the database currently has several
limitations, mainly stemming from the fact that it was
put together based on the limited knowledge of the
authors.

1. Measures of severity should be refined based on
feedback from the security community. We do not
feel we were the best people to judge these values
in most cases.

2. The descriptions and recommendations we pro-
vide are thin in substance.

3. Several fields would be desirable but are currently
not present, such as a detailed description of the
problem and a detailed code example for how to
mitigate the problem.

4. The database is currently Unix specific, reflecting
our lack of knowledge of Windows vulnerabilities.

We hope each of these issues can be addressed in
the near future with the help of the community.

The location of the vulnerability database can be
specified at the command line. As a result, it is very
easy to use databases that have been modified, such
as a pared down database that contains only buffer
overflow information. The programmer can also spec-
ify functions for which ITS4 should check at the com-
mand line, even if they are not in the database. Also,
the programmer can selectively check for particular
functions, or ignore functions through command line
options.

4.3 1ITS4 commands

ITS4 can ignore individual occurrences of a partic-
ular function. While such a feature can be detrimental
(as misuse can cause the tool to ignore actual vulner-
abilities), it is useful for pruning the output as indi-
vidual vulnerabilities are manually audited and elim-
inated.

For example, a developer may add a strcpy to
a work-in-progress. After running ITS4, she learns
about the potential problem, and fixes it by adding
an explicit bounds check before the call. ITS4 cannot
currently perform a sophisticated enough analysis to
determine that such a check is present. As a result,
it will always flag this instance of strcpy. It would
be unfortunate for there to be no way to suppress this
error.

ITS4 commands are meant to ameliorate this prob-
lem, and offers two ways to do so. First, the de-
veloper can insert in-place comments with embedded
commands to the scanner. For example,

strcpy (buf, dst); // ITS4: ignore

Will be ignored. The comment usually occurs on
the same line as the code it effects. However, if there
is no code on the same line, it affects the subsequent
line.

The case-insensitive text “ITS4:” must appear in
the comment, followed by an optional list of function
calls. The list may optionally be comma separated.
Nothing else may appear in the comment.® If no calls
are specified, ITS4 will ignore any call on the affected
line.

When modifying the source code is not an option,
the user can keep a list of ITS4 commands in a file,
along with the file name and line number to which the
command applies. The user specifies the location of
this file on the command line.

5Well, okay, whitespace may also appear.

To allow auditing of code that already has embed-
ded ITS4 commands, the tool provides a command
line option to ignore all commands.

ITS4 provides other ways to reduce the amount of
output, or, at the very least, to present it in a more
useful way. For example, there are several different
sorting methods available, and vulnerabilities can be
filtered based on severity.

4.4 Analysis techniques

When ITS4 first flags a function name, it looks
up a “handler” for the function in the vulnerability
database. The handler is responsible for reporting the
problem flagged by the scanner. If no handler is found
in the database, the default handler is used, which
merely adds the problem to the results database. How-
ever, handlers can be used to perform more sophisti-
cated analysis on a program.

ITS4 performs several tricks in an attempt to re-
duce the number of false positives produced by the
tool. However, the notion of “false positive” is slightly
fuzzy in this discussion, because our tool will never
throw away information about a vulnerability. In
practice, we expect that users will often consider only
a percentage of the output, and then only the output
ranked as most severe. Consider the following C code:

strcpy(buf, "\n");

ITS4 will reduce the severity of the above use of str-
cpy from VERY_RISKY to the lowest available. Since the
scanner only outputs vulnerabilities of MODERATE_RISK
or above by default, the end user will never see the
warning generated by the tool unless she specifically
asks to see all warnings.

In our experience with the tool, we’ve found that
even the most patient programmers will give up fairly
quickly when the severity of all problems is RISKY or
below. We believe the RISKY designation is approxi-
mately where the false positive rate starts to approach
100% rapidly.® Therefore, even in our own security au-
dits, we may only look at such items if time permits,
depending on the situation. This problem is discussed
further in Section 6.

Currently, there are two types of analysis that ITS4
can perform to refine the initial assessment it pro-
duces. The first is checking parameters of string con-
stants in argument parameters in unsafe string oper-
ations. The second is performing a heuristic check for

6Unfortunately, measuring accuracy rates is very difficult to
do, because we would have to examine a large number of pro-
grams to get significant numbers, and because the manual work
involved to obtain such numbers would be enormous.

race conditions, using a modification of an algorithm
presented in [5].

Both analyses can be turned off at the command
line.

4.4.1 Sanity checking arguments

As mentioned in Section 2, grep unfortunately re-
ports many hazards that are “obviously” unlikely to
be problems in practice. When performing code in-
spections with grep we would often note in frustration
the things that could easily be ignored with some code
that wrapped the command. The most common ex-
amples we saw were strcpys that only copied a fixed
string into a buffer and sprintfs with no string spec-
ifier (i.e., %s) in the format string. ITS4 is able to
identify these obvious cases through its handler mech-
anism.

One handler that comes with ITS4 is the “strcpy”
handler. This handler is currently used not only by
strcpy, but also by strcat and strncpy. In each of
these functions, the first argument is the target buffer,
and the second is the source string. If the source string
is a constant, then we should reduce the severity of this
vulnerability. For example, the following call should
not be flagged as severe, because the second argument
is a fixed string;:

strcpy(dst, "\n");

Our handler has a pointer to the current token,
which is the left parenthesis immediately after the
strcpy. If the handler finds anything other than a
parenthesis, it gives up. Next, it tries to find the
second argument, by scanning forward in the token
stream, looking for commas at the right nesting level.
If the first argument consists of nested function calls,
the algorithm will work properly. For example, ITS4
has no problem with the following;:

strcat(a(b("h(i", e(x,y,2z)), "the end.");

If a second argument is not found or is not a string,
ITS4 gives up. Otherwise, it matches the pattern, and
awards the problem the lowest possible severity level.

Similar checking is performed for the sprintf fam-
ily of functions. First, the format string is found.
Then, the format string is scanned for a percent sign,
followed immediately by an ’s’. If no such pattern is
found, ITS4 assumes that either the format string only
contains formatting for numbers, or that all strings
have a precision specification. Either way, the chances
of exploit are greatly reduced. More checking could
easily distinguish between the two possibilities.

In both of these cases, we are recognizing patterns
that are not regular, due to the parenthesis matching
that must be performed; grep-style tools cannot rec-
ognize a pattern that allows arbitrary nesting.” Since
the programmer writing a handler can make use of
the full power of the C++ language, ITS4 is certainly
capable in the general case of performing an analysis
that is not undecidable.?

These two checks were added as a proof of con-
cept. Several other checks that would be possible to
add (and at least somewhat effective) are discussed in
Section 4.7.

A comparison of our technique vs. grep and a more
sophisticated static analysis tool is presented in Sec-
tion 6.

4.4.2 Race condition analysis

Our analysis also addresses race conditions in file
accesses, so-called “Time-Of-Check, Time-Of-Use”
(TOCTOU) problems. Bishop and Dilger discuss
this type of problem extensively;[5] we introduced this
problem in Section 1.

We scan for these problems in a simple way. First,
TOCTOU functions are classified based on their han-
dler into functions that can be checks and functions
that can be uses (several can be both). Every time we
see a function, we look at the identifier that holds the
file name. We store a mapping of variables to the list
of TOCTOU functions that use that variable.

FILE *f;

int main(){
char *fname = argv[1];
if (laccess(fname, W_0K)){
f = fopen(fname, "w+");
}
else{
// Do error handling.
}
// Write stdin to f then exit.
}

In the example above, our mapping would contain
a single key “fname” which would have an array of
two elements as a value. The array’s values would be
the instance of access on line 5 and the instance of
fopen on line 6. The mapping has a lifetime beyond
that of the handler.

7Unless they have context-free extensions.
80f course, how easy such analyses will be to write is another
matter completely!

At this point, scanning continues. After scanning
all tokens, ITS4 calls the handler module to perform
any final analysis of the data before reporting the re-
sults. We iterate over our mapping. For any keys
where there is at least one check on a variable and
one use, we combine the notations into a single result,
which is reported with an increased severity.

This strategy works well, but there are currently
significant limitations that result in ITS4 failing to
promote the severity of conditions that should proba-
bly be reported. The first problem is that ITS4 cur-
rently only recognizes identifiers or string constants as
valid arguments for files. As a result, if we change the
above code to the following;:

FILE *f;
int main(){

if (taccess(argv[1], W_0K)){
f = fopen(argv[1i], "w+");

}
else{
// Do error handling.
}
// Write stdin to f then exit.

3

ITS4 will not increase the severity of the code
above. It easily could do so; we only need imple-
ment a function that can compare a set of tokens for
equivalence.”

Another problem is that we do not handle alias-
ing. For example, if we changed the above code to the
following:

FILE *f;

int main(){
char *f1 = argv[1];
char *f2 f1;
if(taccess(f1, W_0K)){
f = fopen(£f2, "w+");

}
else{
// Do error handling.
}
// Write stdin to f then exit.

ITS4 would not increase the severity. Approaches
for improving the “false negative”s of this analysis are
discussed in Section 4.7.

9Reviewers: This will likely be done before we release the
tool.

Note also that there is still plenty of room for false
positives. Having two variables with the same name is
indistinguishable from a single variable, as far as our
analysis is concerned. Also, our approach fails to take
control flow into account, and so if the check happens
after the use, they are both promoted in severity, when
they should not be.

Currently, there is no similar, available tool that
performs a better static analysis for us to compare
ourselves against. However, in Section 7 we do dis-
cuss our tool in relation to the prototype discussed by
Bishop and Dilger[5].

4.5 Environment integration

ITS4 is designed so that the front-end to the tool
and the back-end for the tool are both easily removed.
We did this because we hope to see ITS4 integrated
into popular programming environments, such as Mi-
crosoft’s Visual Studio.

In such an environment, code should be analyzed
in the background while the user types. The current
line can be scanned continually, and the entire file can
be scanned frequently to see if there are any new con-
structs to flag. When such a construct is identified,
it should be highlighted. Mousing over the problem
could give a detailed description of the issues, and so
on.

ITS4 commands would be a poor user interface for
such an environment. For example, Microsoft Office
allows the user to right-click on a misspelled word to
ignore it; a much better user interface, in our opinion.

Currently, the only environment with which we
have integrated ITS4 is Gnu Emacs. The user can
either run the scan all at once, much like one would
compile a program from within Emacs. Alternatively,
we have bindings available that will scan the current
file every time the user hits enter or moves off the cur-
rent line. Problems are highlighted, and output from
the scanner is placed in another buffer. This inte-
gration is only a prototype, however; it is still fairly
inefficient. The biggest problem is that we invoke the
ITS4 command every time. It would be easy to add
a new front-end to the scanner that enables it to be
a persistent server communicating with Emacs, which
would make it far more usable.

4.6 Performance

We performed preliminary tests on the performance
of ITS4. We measured performance on a Pentium-90
with 32M of RAM running Redhat 5.0. Generally, the
machine is 93.7% idle, with under 2M of real memory
free. We measured the sum of user and system time
using the time command.

Package Lines | Avg. time | lines/sec.
user--sys.

wu-ftpd-2.4 9899 1.343 | 7370.81

net-tools-1.33 | 11724 1.304 | 8990.80

sshd-1.2.26 37343 4.129 | 9044.08

sendmail-8.9.3 | 56829 5.916 | 9605.98

apache-1.3.9 95665 10.755 | 8894.93

Table 2: Performance of ITS4 on a P90

In this environment, we ran our scanner on all the
tools mentioned in Section 3.1.1. The scanner was
run ten times per tool. The wc command was used
to count lines for this study, so comments and blank
lines are included. Our results for each tool appear in
Table 2.

Computed over all 50 runs, the mean number of
lines per second that ITS4 scans is 8789.54, with a
standard deviation of 797.12 lines.

In the course of developing this software, we noticed
some interesting anecdotal trends that help us inter-
pret our results. First, adding analyses such as TOC-
TOU scanning did not have any noticeable impact on
the run time of our tool whatsoever, suggesting that
our tool is currently I/O bound, and not bound by the
analysis.

4.7 Future Directions for ITS4

There are several practical improvements that can

easily be made to ITS4. Among them:

e Integrate with new programming environ-
ments. We discuss this option in Section 4.5.

e Downgrade buffer overflow severity if the
destination is not stack allocated. Overflows
of dynamically allocated and static memory are
generally more difficult to exploit than are over-
flows of stack allocated memory. ITS4 can look
for patterns that look like array declarations. For
each such pattern, ITS4 can actually parse the
declaration to determine whether it is stack al-
located. If not, the variable may be an alias for
a stack allocated buffer. Therefore, the scanner
would also need to check for allocation statements
(and static declarations) before it could rule out
stack allocation. With our general philosophy of
conservatism, items would not be downgraded un-
less such an allocation could be found.'°

10We rarely see references to heap allocated memory later be
used to alias the stack, so we feel comfortable downgrading this
type of situation.

e Perform alias analysis. More accurate TOC-
TOU scanning can be performed if we obtain
pointer aliasing information with any degree of
accuracy, even if it is not fully precise. One way to
go about this is to scan through all tokens, look-
ing for assignments and function calls, noting any
aliases we see. Then, aliases can be considered in
a flow-insensitive, context-insensitive light. Since
we will ignore the lack of flow information and
other contextual clues, we certainly will not be
capable of a precise analysis. The results should
be much better than no such analysis, however,
assuming that it is uncommon for such an ap-
proach to decide something not helpful, such as
“all variables can alias all variables.”

e Perform range analysis. The biggest hurdle to
ITS4 performing the sort of static analysis pre-
sented by Wagner, [17] and briefly described in
Section 3.2, is that the constraint generation step
is difficult, given our approach to parsing the in-
put. While we would have a very difficult time
generating the same constraint sets as they do, a
heuristic parse could potentially do a good job.
Such work should be integrated with any sort of
alias analysis performed.

e Approximate flow information. Even our
proposed heuristic static analysis techniques
could be improved in accuracy if we can extract
a reasonable model of the program’s control flow
from the data stream alone.

5 Practical experience with ITS4

To date, we have applied ITS4 as a tool to assist in
our auditing of two large pieces of software. The first
was [-Pay, a reference version of an electronic payment
system used by many Dutch banks. Our tool helped
us find a definitive break in one of the network appli-
cations that comes with this package. The second was
Jitterbug, a web-based bug tracking system, which has
been extensively audited for security in the past [15].
ITS4 helped find a small number of exploitable flaws,
though they are unlikely to affect many users of the
software.

We have some initial conclusions based on our ex-
periences usign ITS4:

1. ITS4 still requires a significant level of ex-
pert knowledge. While our tool does encode a
vast amount of knowledge on vulnerabilities that
the developer no longer needs to keep in his head,
we’ve found that an expert still does a much bet-
ter job than a novice at taking a potential vul-

nerability location and manually performing the
static analysis necessary to determine whether an
exploit is possible. We find experts tend to be
far more efficient and far more accurate at this
process.

2. Even for experts, analysis is still time-
consuming. While we have not used the tool
enough to give more than anecdotal evidence, we
would say that the tool only eliminates from one
quarter to one third of the time it takes to perform
such an analysis, because the manual analysis is
so time consuming.

3. Every little bit helps. We feel based on
our limited experience with the tool that ITS4
helps significantly with fighting the “get done, go
home” effect. We noticed that in the case where
ITS4 prioritizes one instance of a function call
over another, we tend to be more careful about
analysis of the more severe problem.

4. It can help find real bugs. Using ITS4, we
have found security problems in two real applica-
tions. In both cases, we found the problems in
the first 10 minutes of analysis that we would not
have found as quickly otherwise.

Note that although we ran our tool on several
large applications such as sendmail and apache,
we did not hand-audit those tools. We only spent
enough time with them to gather data for pur-
poses such as timing tests and comparative anal-
yses with other tools.

5.1 I-Pay

We used ITS4 to audit the source code for I-Pay,
“the Internet payment infrastructure for the combined
Dutch banks”[10]. We were most interested in remote
exploits, since the I-Pay software utilities typically run
on organizational web servers and other protected ma-
chines.

ITS4 immediately flagged 160 potential problems
in I-Pay, including 3 possible race conditions. We first
examined all input points of the distribution, as pro-
vided by ITS4. We then examined approximately 20 of
the problems reported by the regular scan. We did this
over the course of two hours. We primarily searched
buffer overflow candidates that ITS4 flagged as “very
risky”. We uncovered one problem that is exploitable
over the network, and three that can be exploited lo-
cally.

Our first step was to use ITS4 in locating all sites
where network or file data was read. ITS4 flagged a

single call to recv. We saw that this call was made
from a function called netread. We asked ITS4 to
find netread, and nothing else. There were several
instances found, but we followed the first, which was
made from a function called multiread. We asked
ITS4 to find uses of this function. It found us one,
in a function called saferead, which was itself used
only three times. Examining these three call sites
showed that most interesting network communication
took place from these points. The first of these three
calls turned out to be a major vulnerability.

I-Pay includes a utility called checkkey which is
used after installation to check the firewall settings of
the host machine and confirm that the Triple-DES li-
brary included with I-Pay is correctly configured for
encryption and decryption. When checkkey executes,
it constructs a simple text message, which is encrypted
and sent to a server specified in a configuration file.
The checkkey program waits for a response from this
server, decrypts the response upon reciept, and dis-
plays it along with status information. Unfortunately,
the buffer which receives the response message is a
stack-allocated 256 byte buffer, while the function
charged with reading data from the socket will read
up to 32766 bytes. This programming mistake will al-
low a malicious server or a machine masquerading as
the server to introduce and execute arbitrary code on
the client machine. About an hour of subsequent anal-
ysis was required to confirm that this spot was likely
to be a vulnerability. A brief test confirmed that it
was remotely exploitable.

The other potential problems identified by ITS4
were less serious. Several calls to strcpy and sprintf
were flagged as risky, but were deemed harmless upon
inspection. We did locate three other buffer overflow
vulnerabilities using the tool, but they each require lo-
cal access. As long as the I-Pay utilities run with low
privileges on non-interactive machines, these potential
flaws are likely have little or no impact.

The temporary file name selection algorithm em-
ployed by I-Pay appears quite poor, and susceptible
to a race condition. We were alerted to this potential
problem by ITS4, but we have not had enough time
to look into the matter.!'!

5.2 Jitterbug

Jitterbug is free software, written in C, that tracks
bug reports over the web. We were interested in audit-
ing Jitterbug because we use it for other purposes, and
we are skeptical of any C code we run, especially if it
has network access. We learned after our analysis that
Jitterbug has previously been extensively analyzed.

1 Reviewers: We do expect to do so shortly.

The first five things reported by ITS4 were calls to
popen. All of the calls passed input from the config-
uration file into popen. Assuming the configuration
file is secure and the environment in which the pro-
gram runs is also secure, these should not be prob-
lems. However, three of those popens also take input
from the web. One performs sufficient sanity checking
of the arguments; we were unable to exploit it. The
other two uses are exploitable; we were able to confirm
this with an actual exploit. However, the vulnerabil-
ities are only exploitable if one of two undocumented
features are enabled (by default, they are not). There-
fore, very few people, if any, are susceptible to this
vulnerability. Apparently, the features were added for
a single high-profile user who no longer uses the soft-
ware, and, in light of the vulnerabilities found, they
will be removed in the next version of the software[15].

ITS4 also found some buffer overflow conditions
that were also exploitable in only very exceptional cir-
cumstances. For example, Jitterbug has the following
macro definition:

#define MAX_USERNAME_LEN 30

If a user decides this number is low for her needs
and changes it to a very high number because she
doesn’t want there to be an arbitrary limit, the user
has unintentionally added a security vulnerability, be-
cause elsewhere in the program there will now be an
exploitable sprintf.

There was also another fully exploitable buffer over-
flow found. However, its scope was also one of the
aforementioned undocumented features [15].

We did not have time to examine all output from
the tool.'? In particular, there were five TOCTOU re-
ports generated by the race condition analysis that we
wish to explore. The grep command reported nearly
80 different function call sites where the called func-
tion can be involved in a TOCTOU condition. With-
out this tool, we would have manually examined each
of the 80 calls in the context of the entire program. In
this case, we will only have to consider flagged spots
in the context of the list generated.

The reduction in time spent examining code is
therefore expected to be large. However, do remember
that our analysis does not handle aliasing.

One thing that we noticed when examining Jitter-
bug is that out of 78 functions ITS4 identified as po-
tential spots for buffer overflows, 38 of them were pro-
tected by a call to a function called check_overflow
on the line immediately preceding it. This function
aborts if it detects an overflow. We did not notice any

I2Reviewers: We expect to finish this analysis shortly.

Package | grep | ITS4 | ITS4 Lex Anl.
-anl. red.(%) | red.(%)
wu-ftpd 146 138 112 5.48 17.81
net-tools 160 142 103 11.25 24.38
sshd 265 238 206 10.19 12.08
sendmail | 480 418 342 12.92 15.83

apache 623 168 113 73.03 8.83

Table 3: Effectiveness of grep compared to ITS4,
without and with analysis.

instances where the programmer used this call incor-
rectly. It would be nice if these false positives could be
removed automatically by the tool, but currently we
do not perform a sophisticated enough static analysis.

6 Comparing ITS4 to other solutions
6.1 grep

In this subsection, we compare grep to ITS4, each
using a database that only scans the 13 functions for
which there are buffer overflow handlers. We limit the
scope of our comparison in this way so that we can
compare the performance of the handlers. Relative
severities are ignored; either the tool reported a prob-
lem, or it did not. In the case of ITS4 with analysis, if
the analysis downgraded a problem to the lowest pos-
sible setting, we considered that a failure to report.

Table 3 shows the number of vulnerabilities found
by grep, ITS4 with analysis turned off, and ITS4
with analysis on. The next to the last column of
this table shows the percent reduction of results re-
ported compared to grep when smarter parsing is ap-
plied (i.e., lexing instead of grep). The last column
shows the percent reduction of results reported that
are due to our analysis. Note that, except in the case
of apache, which is a vast outlier, our feeble analysis
seems slightly more effective than better parsing.

Table 4 shows the overall reduction in vulnerabil-
ities reported from grep. We believe that indicates
that ITS4 users can expect results that are around
25% better than grep, perhaps more. However, this
number will probably vary widely by application, and
may also vary based on the programming style of the
developer.

6.2 Buffer overflow detection via range
analysis
The only other tool of which we are aware that
we might possibly compare our work to is presented
in [17]. Unfortunately, this comparison proves to be
quite difficult:

Package | grep | ITS4 | Reduction (%)
wu-ftpd 146 112 23.29
net-tools 160 103 35.63
sshd 265 206 22.26
sendmail | 480 342 28.75
apache 623 113 81.86

Table 4: Total reduction compared to grep.

1. Their work is not limited to picking out function
calls, as ours currently is. Therefore, they may
flag some problems that we do not.

2. Their work fails to analyze approximately 17.95%
of the program that ITS4 does not fail to analyze.

3. Their output is based on different metrics than
ours is. While theirs is based solely on the results
of their analysis, ours is largely based on human
experience, with only a small analysis component.

Nonetheless, we make some simplifying assump-
tions, in an attempt to compare how the tools would
compare “in practice”:

1. Since we do not know the configuration used to
test sendmail, we make the assumption that it
was the same as ours.

2. We assume that our tool will report everything
their tool reports, and probably more.

3. They present results for how many “probable” re-
sults their tool gives. We assume that reporting
our “very risky” and “most risky” classifications
has the same semantic meaning. This means that,
for the sake of our comparison, there are some
functions our tool considers that it will never re-
port, because its risk classification is too low. The
assumption is that such calls are very unlikely to

show up in their analysis.

4. We assume that the vulnerabilities that a par-
ticular tool will flag are uniformly distributed
throughout the source code.

Their analysis of sendmail yielded 44 “probable”
vulnerabilities. Our analysis yielded 79. Adjusting
their number for the 17.95% of the code they missed
based on our uniform distribution assumption, their
modified number of vulnerabilities for the sake of com-
parison would be 53.6. With this set of simplified as-
sumptions, their results give a 32.15% reduction in
false positives. In practice, we would expect to see re-
sults from their tool that give up to a 50% reduction.

7 Related work

Regular “lint” tools such as LCLint [7] perform sim-
ilar functions, but in the context of general robustness;
security features generally are not included. Also, such
tools tend work on a per-build basis, and use context-
free parsing.

Security experts have long proposed building sim-
ple scanners that operate on source code, looking for
simple patterns that can potentially be exploited. To
date, we know of three limited prototypes of such sys-
tems (other than ours), all of which process C, and
possibly C++.

The first is slint[13], a general-purpose security
scanner developed by mudge, formerly of the 10pht.
While there is a public web page for this product, no
technical information is public.

The second is the Bishop and Dilger race condition
scanner. In [5], they detail a fairly accurate static
analysis for TOCTOU problems. Their prototype is
similar in functionality and power to our race condi-
tion scanning. For example, it uses regular expressions
for token recognition, instead of context-free parsing.

The primary difference between the two tools is
that the Bishop and Dilger scanner considers variable
names on a per-function basis, whereas ITS4 does not.
If two functions each have a variable with the same
name, ITS4 will treat all variables with the same name
as the same variable, even if across separate files. We
believe the ITS4 behavior to be slightly more useful,
because most programmers name parameters and local
variables consistently across functions. For example,
consider the following code:

void do_it(char *fname) {
FILE *f = fopen(fname, "w");
}
int main(int argc, char x*argv) {
char *fname = argv[1];
if (access(fname, W_0K))
do_it(fname);

The Bishop and Dilger scanner will miss the above
race condition, because it does not support interpro-
cedural analysis.

Bishop and Dilger’s tool has never been distributed,
however, a third party reimplementation has recently
become available[2].

The only other tool we know about that statically
scans for security vulnerabilities is presented in [17].
We discussed this tool (primarily in Sections 3 and 6),
as well as its relative advantages and disadvantages
compared to the ITS4 approach.

Other forms of static analysis are possible. For ex-
ample, we discussed locating the places in the code
where input to the program is possible. From there,
the usual goal is to follow program flow to see what
damage untrusted input can do. Static language sup-
port for such an analysis is now available for a superset
of the Java programming language[14].

8 Conclusion

We have presented ITS4, a static analysis tool for
C and C++. While its parsing model makes it poorly
suited for highly accurate static analysis, the same
model makes the tool very practical for real world use;
even with some facility for a heuristic-driven static
analysis of the program, ITS4 can scan large programs
efficiently, while still achieving adequate results. The
tool is also appropriate for integration into program-
ming environments with little modification.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers:
Principles, Techniques and Tools. Addison Wes-
ley, 1986.

[2] Antonomasia. scancode.plx.
http://www.notatla.demon.co.uk/SOFTWARE.

[3] B. Arkin, F. Hill, S. Marks, M. Schmidt, T. Walls,
and G. McGraw. How we learned to cheat
at online poker: A study in software secu-
rity. The developer.com Journal, September 1999.
http://www.developer.com/journal.

[4] M. Bishop. Writing safe setuid programs, 1998.
seclab.cs.ucdavis.edu/ bishop/secprog.html.

[5] M. Bishop and M. Dilger. Checking for race
conditions in file accesses. Computing Systems,
9(2):131-152, Spring 1996.

[6] C. Cowan et. al. Stackguard: Automatic adap-
tive detection and prevention of buffer-overflow
attacks. In Proceedings of the Seventh USENIX
Security Symposium, pages 63—77, San Antonio,
TX, 1998.

[7] D. Evans, J. Guttag, J. Horning, and Y. Meng
Tan. Leclint: A tool for using specifications to
check code. In In proceedings of the SIGSOFT
Symposium on the Foundations of Software En-
gineering, December 1994.

[8] S. Garfinkel and G. Spafford. Practical Uniz and
Internet Security. O’Reilly and Associates, Inc.,
1996.

[9] I. Goldberg and D. Wagner. Randomness and
the netscape browser: How secure is the world

wide web? Communications of the ACM, Jan-
uary 1996.
[10] InterPay. I-pay product web site.

http://www.ipay.com.

[11] W. Landi and B. Ryder. A safe approxima-
tion algorithm for interprocedural pointer alias-
ing. In Proceedings of Programming Language
Design and Implementation, 1992.

[12] E. Levy. The bugtraq mailing list.
http://www.securityfocus.com.

[13] mudge. The slint web page.
http://www.10pht.com/slint.html.

[14] A. Myers. Practical mostly-static information
flow control. In Proceedings of ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, San Antonio, TX, January 1999.

[15] A. Tridgell. Personal Communication.
[16] D. Wagner. Personal Communication.

[17] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A
first step towards automated detection of buffer
overrun vulnerabilities. In Proceedings of the Year
2000 Network and Distributed System Security
Symposium (NDSS), pages 3-17, San Diego, CA,
2000.

